No, since they are the strongest type of ray only elements that are dense can block them.
Answer:
1st Question: A
2nd Question: B
Explanation:
The 1st answer would be A because if a sample is at absolute zero then the sample is at its lowest temperature none of the molecules would be able to move, this is because lower temperature= lower kinetic energy.
The 2nd answer would be B because if a sample has more temperature it speeds up it has more temperature and more kinetic energy, meaning it would move faster because there is more temperature.
Answer:
Solution:-
The gas is in the standard temperature and pressure condition i.e. at S.T.P
Therefore,
V
i
=22.4dm
3
V
f
=?
As given that the expansion is isothermal and reversible
∴ΔU=0
Now from first law of thermodynamics,
ΔU=q+w
∵ΔU=0
∴q=–w
Given that the heat is absorbed.
∴q=1000cal
⇒w=−q=−1000cal
Now,
Work done in a reversible isothermal expansion is given by-
w=−nRTln(
V
i
V
f
)
Given:-
T=0℃=273K
n=1 mol
∴1000=−nRTln(
V
i
V
f
)
⇒1000=−1×2.303×2×273×log(
22.4
V
f
)
Explanation:
Reducing the volume of contained gas by one third, while holding temperature constant, causes pressure to D. be increased by one third
I believe your answer should be C because the heat would move from the soup to the spoon.