<u>Answer:</u> The average atomic mass of lithium is 6.9241 u.
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
....(1)
- <u>For
isotope:</u>
Mass of
isotope = 6 u
Percentage abundance of
isotope = 7.59 %
Fractional abundance of
isotope = 0.0759
- <u>For
isotope:</u>
Mass of
isotope = 7 u
Percentage abundance of
isotope = 92.41%
Fractional abundance of
isotope = 0.9241
Putting values in equation 1, we get:
![\text{Average atomic mass of Lithium}=[(6\times 0.0759)+(7\times 0.9241)]](https://tex.z-dn.net/?f=%5Ctext%7BAverage%20atomic%20mass%20of%20Lithium%7D%3D%5B%286%5Ctimes%200.0759%29%2B%287%5Ctimes%200.9241%29%5D)

Hence, the average atomic mass of lithium is 6.9241 u.
Answer:
Mass = 14.876 g
Explanation:
Given data:
Volume of gold = 0.77 cm³
Mass of gold = ?
Solution:
Density of gold from literature is 19.32 g/cm³
Formula:
d = m/v
d = density
m = mass
v = volume
by putting values,
19.32 g/cm³ = m/ 0.77 cm³
m = 19.32 g/cm³ × 0.77 cm³
m = 14.876 g
Organ system, because there are multiple organs that work together to help make the body function.
Answer:
1.4 × 10^-4.
Explanation:
C3H6O3 + H2O <======> C3H5O3^- + H3O^+ ------------------------------------------(1).
So, from the question above we are given the following parameters or data which is going to help in solving this particular Question/problem;
=>concentration of the solution of lactic acid (CH3CH(OH)C00H) = 0.1 M and pH = 2.44.
Therefore, the concentration of the hydrogen ion[H^+} can be determined from the pH formula given below;
pH = - log { H^+}.
2.44 = - log { H^+}.
Therefore, {H^+} = 0.0036 M.
From the equation (1) given above, we have that the ratio for the equilibrium reaction is 1 : 1 : 1 :1. Therefore, molarity of C3H5O3^- = 0.0036 M and the molarity of C3H6O3 =( 0.1 - 0.0036 M) = 0.0964 M at equilibrium.
Hence, ka = {C3H5O3^-} { H3O^+} /{C3H6O3} = ( 0.0036 M)^2 /(0.0964 M) = 1.4 × 10^-4.
Answer:
58.9mL
Explanation:
Given parameters:
Initial volume = 34.3mL = 0.0343dm³
Initial concentration = 1.72mM = 1.72 x 10⁻³moldm⁻³
Final concentration = 1.00mM = 1 x 10⁻³ moldm⁻³
Unknown:
Final volume =?
Solution:
Often times, the concentration of a standard solution may have to be diluted to a lower one by adding distilled water. To find the find the final volume, we must recognize that the number of moles of the substance in initial and final solutions are the same.
Therefore;
C₁V₁ = C₂V₂
where C and V are concentration and 1 and 2 are initial and final states.
now input the variables;
1.72 x 10⁻³ x 0.0343 = 1 x 10⁻³ x V₂
V₂ = 0.0589dm³ = 58.9mL