Answer:
Charles' Law
Explanation:
Charles' law states that at constant pressure, the volume of a fixed mass of gas is directly proportional to the absolute temperature. This implies that as the temperature of the gas is increased, the volume of the gas also increases and as the temperature is decreased, the volume also decreases.
From the question given above, we were told that as the gas warms ( i.e increase in temperature), it expands to fill the fill the balloon. This is clearly charles' law because the volume of the gas increased with increasing temperature.
Answer:
The correct answer is 0.024 M
Explanation:
First we use an ICE table:
Br₂(g) + F₂(g) ⇔ 2 BrF(g)
I 0.111 M 0.111 M 0
C -x -x 2 x
E 0.111 -x 0.111-x 2x
Then, we replace the concentrations of reactants and products in the Kc expression as follows:
Kc= ![\frac{[BrF ]^{2} }{[ F_{2} ][Br_{2} ]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BBrF%20%5D%5E%7B2%7D%20%7D%7B%5B%20F_%7B2%7D%20%5D%5BBr_%7B2%7D%20%20%5D%7D)
Kc= 
54.7= 
We can take the square root of each side of the equation and we obtain:
7.395= 
0.111(7.395) - 7.395x= 2x
0.82 - 7.395x= 2x
0.82= 2x + 7.395x
⇒ x= 0.087
From the x value we can obtain the concentrations in the equilibrium:
[F₂]= [Br₂]= 0.111 -x= 0.111 - 0.087= 0.024 M
[BrF]= 2x= 2 x (0.087)= 0.174 M
So, the concentration of fluorine (F₂) at equilibrium is 0.024 M.
Answer:
(a)The molar mass of the gene fragment is 18220.071g/mol = 18.22 kg/mol
(b)The freezing point for the aqueous solution is
C
Explanation:
The osmotic pressure (π) is given by the following equation:

= Concentration of solution
R = universal gas constant = 62.364 
T = temperature
Weight of solute = w = 10.0 mg
Let the molecular weight of the solute be m g/mol.
Concentration = 

m = 18220.071g/mol
Therefore, the molar mass of the gene fragment is 18220.071g/mol = 18.22 kg/mol

m is the molality of the solution.
m =
mol/kg

=
C
The freezing point for the aqueous solution is
C
Physical change - No change of matter in this phase
chemical change - All types of phase change occur here
Stratospheric ozone is formed naturally through the interaction of UV radiation with molecular oxygen.
not sure if this is what you want but hope it helps!!!