28.090.............................................
Answer:
<u>Principal</u><u> </u><u>focus</u><u> </u><u>of</u><u> </u><u>concav</u><u>e</u><u> </u><u>lens</u><u> </u><u>-</u><u> </u>
★ The point at which rays parallel to principal axis coming from infinity appear to converge after being refracted from concave lens is called the principal focus of concave lens.
<em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em>
• <u>Additional</u><u> information</u><u> </u><u>-</u><u> </u>
★ Principal focus - A number of rays parallel to the principal axis after reflection from a concave mirror meet at a point on the principal axis or appear to come from a point after reflection from a convex mirror on the principal axis. This is called principal focus.
Answer:
The average densities of both matches the expected density for objects made from water ice.
Explanation:
Charon's density is 1.2 to 1.3 g / cm3, while Pluto's density is 1.8 to 2.1 g / cm3. This was discovered in many researches and measurements of these two celestial bodies, with the objective of understanding them and promoting efficient scientific knowledge.
With the measurements of the average densities between pluto and Charon it was possible to conclude several statements about them. Firstly, it is possible to see that the two formed independently and at different times, in addition to indicating the existence of few rocks in charon, which is consistent with the average density of objects made mostly of water ice.
A material that has high resistance to the flow of electric current is called an electric resistor