Answer:
The charge on the drop is
q = 1.741 x 10 ⁻²¹ C
Explanation:
Electric field due to plates
Ef = V/d
Ef = 2033 V / (2.0 * 10^-2 m )
Ef = 101650 V/m
So, we can write
Ef * q = m*g
q = m*g / E
f
The mass can be equal using the density and the volume so:
m = ρ * v
The volume can be find as:
v = 2.298 x 10 ⁻ ¹⁶ m³
q = ρ * v * g / Ef
q = 81 x 10 ³ kg/ m³ * 2.2298 x 10 ⁻ ¹⁶ m³ * 9.8 m/s² / 101650 V/m
The charge on the drop is
q = 1.741 x 10 ⁻²¹ C
Answer:

Explanation:
As we know that the magnetic field near the center of solenoid is given as

now we know that initially the length of the solenoid is L = 18 cm and N number of turns are wounded on it
So the magnetic field at the center of the solenoid is 2 mT
now we pulled the coils apart and the length of solenoid is increased as L = 21 cm
so we have

now plug in all values in it


Aw, I hate physics, is this on Apex?
Resistance can be calculated with the information given in the question.
Equation for Resistance: R = V/I
V (voltage) = 200 Volts
I (current) = 200 Amps
So 200 divided by 200 = freaking 1
Answer: R = 1 (ohms)
Hope this Helps!
Answer:
h' = 603.08 m
Explanation:
First, we will calculate the initial velocity of the pellet on the surface of Earth by using third equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity on the surface of earth = - 9.8 m/s² (negative sign due to upward motion)
h = height of pellet = 100 m
Vf = final velocity of pellet = 0 m/s (since, pellet will momentarily stop at highest point)
Vi = Initial Velocity of Pellet = ?
Therefore,
(2)(-9.8 m/s²)(100 m) = (0 m/s)² - Vi²
Vi = √(1960 m²/s²)
Vi = 44.27 m/s
Now, we use this equation at the surface of moon with same initial velocity:
2g'h' = Vf² - Vi²
where,
g' = acceleration due to gravity on the surface of moon = 1.625 m/s²
h' = maximum height gained by pellet on moon = ?
Therefore,
2(1.625 m/s²)h' = (44.27 m/s)² - (0 m/s)²
h' = (1960 m²/s²)/(3.25 m/s²)
<u>h' = 603.08 m</u>