This question is a critical question. as we all know, when energy is added to any state of water, the particles move faster. and when energy is taken away from any state of water, the particles reduce speed. same with the particles of air. when energy is added; they move faster. when energy is removed; they move slower. so the answer is they move faster
Answer:
If there is a net force acting on an object, the object will have an acceleration and the object's velocity will change. ... Newton's second law states that for a particular force, the acceleration of an object is proportional to the net force and inversely proportional to the mass of the object.
Explanation:
There are two forces acting on a rocket at the moment of lift off: Thrust pushes the rocket upwards by pushing gases downwards in the opposite direction.Weight is the force due to gravity pulling the rocket downwards towards the centre of the earth.So I'm thinking the answer is THRUST.
Mercury and Venus are therefore closer to each other most of the time. But Earth is the planet closest to Venus. And that's why from here on Earth, Venus looks so big and luminous. Venus is the brightest thing in the night sky after the sun and the moon.
<em>Answer:</em>
<em>well..</em>
<em>Explana</em><em>tion</em><em>:</em>
<em>L</em><em>iquid</em><em> can flow but solid cannot because of differences in their properties</em>
<em>property of liquid which lets it flow:</em>
- <em>i</em><em>nter-particular</em><em> space is large</em>
- <em>inter-particular attraction is small</em><em> </em><em>t</em><em>hese</em><em> properties tend to make the molecules of liquid free to flow</em><em> </em>
<em>property</em><em> </em><em>of</em><em> </em><em>solid</em><em> </em><em>which</em><em> </em><em>tends</em><em> </em><em>to</em><em> </em><em>obstruct</em><em> </em><em>flow</em><em>:</em>
- <em>inter-particular</em><em> </em><em>spa</em><em>c</em><em>e</em><em> </em><em>is</em><em> </em><em>small</em><em> </em><em>and</em><em> </em><em>so</em><em> </em><em>it's </em><em>compac</em><em>t</em>
- <em>inter-molecular</em><em> </em><em>attra</em><em>ction</em><em> </em><em>is</em><em> </em><em>strong</em><em> </em><em>hence</em><em> </em><em>no</em><em> </em><em>tenden</em><em>cy</em><em> </em><em>to</em><em> </em><em>flow</em>
<em>H</em><em>o</em><em>p</em><em>e</em><em> </em><em>this</em><em> </em><em>helps</em><em>!</em>