Answer:
105 m/s
Explanation:
Given that the speed of train A,
= 45 m/s from west to east.
Speed of train B,
= 60 m/s from east to west.
Train B is moving in the opposite direction with respect to the speed of train A. Assuming that the speed from east to west direction is positive.
So, the speed of train A from east to west= - 45 m/s
The speed of train B w.r.t train A
m/s
Hence, the speed of train B w.r.t train A is 105 m/s from east to west.
The coefficient of static friction is 0.222
Explanation:
In order for the car to remain in circular motion, the frictional force must be able to provide the necessary centripetal force. Therefore, the car will start skidding when the two forces are equal:

where the term on the left is the frictional force, while the term on the right is the centripetal force, and where
is the coefficient of static friction
m is the mass of the car
g is the acceleration of gravity
v is the speed of the car
r is the radius of the track
In this problem, we have:
r = 564 m
v = 35 m/s

And re-arranging the equation for
, we can find the coefficient of static friction:

Learn more about friction:
brainly.com/question/6217246
brainly.com/question/5884009
brainly.com/question/3017271
brainly.com/question/2235246
#LearnwithBrainly
It would be Joules.
Workdone is measured in Joules.
Workdone = Force * distance
Force = mass * acceleration
= kg * ms⁻²
= kgms⁻²
Distance = m
So, Force * distance
kgms⁻² * m
Apply laws of indices that says
x² * x³ = x²⁺³ = x⁵
Therefore, It would be kgm²s⁻²
m¹ * m¹ = m¹⁺¹ = m²
s⁻² is also = s / 2
Answer:
0.4
Explanation:
Given that a particular inductor is connected to a circuit where it experiences a change in current of 0.8 amps every 0.10 sec. If the inductor has a self-inductance of 2.0 V, what is the inductance
Using the power formula
P = IV
Substitute all the parameters
P = 0.8 × 2
P = 1.6 W
But P = I^2 R
Substitute power and current
1.6 = 0.8^2 R
R = 1.6 / 0.64
R = 2.5 ohms
Inductance = reciprocal of resistance
Inductance = 1 / 2.5
Inductance = 0.4