Explanation:
(a) Formula to calculate the density is as follows.

= 
= 
Now, calculate the charge as follows.

= 
=
C
or, = 101.06 nC
(b) For r = 6.50 cm, the value of charge will be calculated as follows.

= 
= 7.454 
Answer:
the frequency of the second harmonic of the pipe is 425 Hz
Explanation:
Given;
length of the open pipe, L = 0.8 m
velocity of sound, v = 340 m/s
The wavelength of the second harmonic is calculated as follows;
L = A ---> N + N--->N + N--->A
where;
L is the length of the pipe in the second harmonic
A represents antinode of the wave
N represents the node of the wave

The frequency is calculated as follows;

Therefore, the frequency of the second harmonic of the pipe is 425 Hz.
Answer:
x = 1.6 + 1.7 t^2 omitting signs
a) at t = 0 x = 1.6 m
b) V = d x / d t = 3.4 t
at t = 0 V = 0
c) A = d^2 x / d t^2 = 3.4 (at t = 0 A = 3.4 m/s^2)
d) x = 1.6 + 1.7 * (4.4)^2 = 34.5 (position at 4.4 sec = 34.5 m)
E=energy=5.09x10^5J = 509KJ
<span>M=mass=2250g=2.25Kg </span>
<span>C=specific heat capacity of water= 4.18KJ/Kg </span>
<span>ΔT= change in temp= ? </span>
<span>E=mcΔT </span>
<span>509=(2.25)x(4.18)xΔT </span>
<span>509=9.405ΔT </span>
<span>ΔT=509/9.405=54.1degrees </span>
<span>Initial temp = 100-54 = 46 degrees </span>
<span>Hope this helps :)</span>