The correct answer is A. Installation of rigid metal conduit requires grounding and the grounding equipment used may weaken the structure.
Answer:
Magnitude of resultant = 131.15
Direction of resultant = 3.97°
Explanation:
||u|| = 70
θ = 40°


||v|| = 85
θ = 335°


Resultant


Magnitude of resultant = 131.15
Direction of resultant = 3.97°
Answer: 11 km/h at 339° compass
Explanation:
A sees B moving south at 0 km/h
A is moving north at 12cos30 = 10.392 km/h
Therefore B must be moving north at 10.392 k/h
A is moving east at 12sin30 = 6 km/h
B appears to be moving west at 10 km/h
Therefore B must be moving west at 10 - 6 = 4 km/h
B is moving v = √(4² + 10.392²) = 11.135... 11 km/h
θ = arctan( -4 / 10.392) = -21.05 = 339°
Hello
1) First of all, since we know the radius of the wire (

), we can calculate its cross-sectional area

2) Then, we can calculate the current density J inside the wire. Since we know the current,

, and the area calculated at the previous step, we have

3) Finally, we can calculate the electric field E applied to the wire. Given the conductivity

of the aluminium, the electric field is given by
Answer:
The density of the mixture is 0.55kg/m^3
Explanation:
P = 1bar = 100kN/m^2, T = 0°C = 273K, n = 0.4+0.6 = 1mole
PV = nRT
V = nRT/P = 1×8.314×273/100 = 22.70m^3
Mass of N2 = 0.4×28 = 11.2kg
Mass of H2 = 0.6×2 = 1.2kg
Mass of mixture = 11.2 + 1.2 = 12.4kg
Density of mixture = mass/volume = 12.4/22.7 = 0.55kg/m^3