Answer:
The net force acting on the body is 10N directed to the left.
Explanation:
Magnitude of force to the right = 5N
Magnitude of force to the left = 15N
Net force acting on the object and in what direction;
Solution:
It is the vector sum of all forces acting on a body. This net force is the single force that will replace the forces acting on a body;
For the problem;
Net force = Force to the left + Force to the right
Let us take left to be negative and right to be positive;
Force to the left = -15N
Net force = -15N + 5N = -10N
The net force acting on the body is 10N directed to the left.
The magnitude of the average impulsive force imparted to the ball if it is in contact with the bat is 6000 N
The mass of the baseball, m = 0.15 kg
The speed at which it moves, v = 30 m/s
Time at which the baseball was in contact with the bat, t = 0.75 ms
t = 0.75/1000 s
t = 0.00075 s
The impulsive force is given by the formula:

Substitute m = 0.15 kg, v = 30, and t = 0.00075s into the formula above:

The magnitude of the average impulsive force imparted to the ball if it is in contact with the bat is 6000 N
Learn more here: brainly.com/question/25892144
Explanation:
The weight of the car is equal to,
...........(1)
Where
m is the mass of car
g is the acceleration due to gravity
The normal or vertical component of the force is, 
or
.............(2)
The horizontal component of the force is, 
Taking ratio of equation (1) and (2) as :



or

Hence, this is the required solution.
Analog
Television transmitters use one of two different technologies: analog, in which the picture and sound are transmitted by analog signals modulated onto the radio carrier wave, and digital in which the picture and sound are transmitted by digital signals.
The kinetic energy of the cart is 24 J.
<u>Explanation:</u>
The acceleration of a given mass from rest to the velocity is known as kinetic energy. It gains energy from acceleration and remains in this state until the speed of the object changes.
The kinetic energy is the given by,
K.E = 1/2 mv^2
Given the mass m = 3 kg, v = 4 m / s.
K.E = 1/2
3
(4)^2
K.E = 24 J.