1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
damaskus [11]
2 years ago
5

Answer the following. (a) What is the surface temperature of Betelgeuse, a red giant star in the constellation of Orion, which r

adiates with a peak wavelength of about 970 nm? K (b) Rigel, a bluish-white star in Orion, radiates with a peak wavelength of 145 nm. Find the temperature of Rigel's surface. K
Physics
1 answer:
bagirrra123 [75]2 years ago
6 0

Answer:

(a) T = 2987.6 k

(b) T = 19986.2 k

Explanation:

The temperature of a star in terms of peak wavelength can be given by Wein's Displacement Law, which is as follows:

T = \frac{0.2898\ x\ 10^{-2}\ m.k}{\lambda_{max}}

where,

T = Radiated surface temperature

\lambda_{max} = peak wavelength

(a)

here,

\lambda_{max} = 970 nm = 9.7 x 10⁻⁷ m

Therefore,

T = \frac{0.2898\ x\ 10^{-2}\ m.k}{9.7\ x\ 10^{-7}\ m}

<u>T = 2987.6 k</u>

(b)

here,

\lambda_{max} = 145 nm = 1.45 x 10⁻⁷ m

Therefore,

T = \frac{0.2898\ x\ 10^{-2}\ m.k}{1.45\ x\ 10^{-7}\ m}

<u>T = 19986.2 k</u>

You might be interested in
What is the speed of a wave that has a frequency of 125 Hz and a wavelength of 1.25 meters?
kirill115 [55]
Using the "v = f. λ" <span>equation...
 
Your "v" or </span>velocity = 156.25 meters/second
5 0
3 years ago
Tom has two pendulums with him. Pendulum 1 has a ball of mass 0.2 kg attached to it and has a length of 5 m. Pendulum 2 has a ba
mars1129 [50]

Given Information:

Pendulum 1 mass = m₁ = 0.2 kg

Pendulum 2 mass = m₂ = 0.6 kg

Pendulum 1 length = L₁ = 5 m

Pendulum 2 length = L₂ = 1 m

Required Information:

Affect of mass on the frequency of the pendulum = ?

Answer:

The mass of the ball will not affect the frequency of the pendulum.

Explanation:

The relation between period and frequency of pendulum is given by

f = 1/T

The period of pendulum is given by

T = 2π√(L/g)

Where g is the acceleration due to gravity and L is the length of the string

As you can see the period (and frequency too) of pendulum is independent of the mass of the pendulum. Therefore, the mass of the ball will not affect the frequency of the pendulum.

Bonus:

Pendulum 1:

T₁ = 2π√(L₁/g)

T₁ = 2π√(5/9.8)

T₁ = 4.49 s

f₁ = 1/T₁

f₁ = 1/4.49

f₁ = 0.22 Hz

Pendulum 2:

T₂ = 2π√(L₂/g)

T₂ = 2π√(1/9.8)

T₂ = 2.0 s

f₂ = 1/T₂

f₂ = 1/2.0

f₂ = 0.5 Hz

So we can conclude that the higher length of the string increases the period of the pendulum and decreases the frequency of the pendulum.

3 0
3 years ago
Read 2 more answers
In levelling, the following staff readings were observed involving an inverted staff, A = 2.915 and B = -2.028. What is the rise
salantis [7]

Answer:

The rise from A to B is 0.887

Solution:

As per the question:

The following reading of an inverted staff is given as:

A = 2.915

B = -2.028

Here, for inverted staff, the greater reading shows greater elevation and lesser reading shows lower elevation.

Thus

The rise from A to B is given as:

A - B = 2.915 - 2.028 = 0.887

8 0
3 years ago
A cord is attached to the box and run through a pulley directly above the box, so that the cord is vertical. The free end of the
Harman [31]

Answer:

The answer is given here would be a simplified equation, seeing as there are some missing variables in the question.

<u>F1 = T- 46, 674.656 gm/s² </u>

Explanation:

<em>Note: Once we have the mass of the second object and/or acceleration of the cord, we can solve for the force of the ground acting on the box.</em>

To calculate the force caused by gravity on the basic pulley system we use the following equation:

F2 = M2 x g; where g= gravitational acceleration (a constant equal to 9.8 m/s²). The mass M2 = 10.5 lb = 4762.72g

∴ F2 = 4762.72g x 9.8 m/s²

= 46, 674.656 gm/s² or 46, 674.656 N

But since this F2 is acting in a downlowrd direction, it would be negative.

Tension of the cord, T = Mass, x × acceleration. ( x is in the pulley diagram)

⇒ F1 = T - F2

<u>F1 = T- 46, 674.656 gm/s² </u>

4 0
3 years ago
The distance between Earth and Mars is 225 million km. When converted using the conversion factor 1 AU = 1.5 × 108 km, the dista
noname [10]
To convert km to AU, we divide 225,000,000 km by the factor of 1.5 x 10^8 = 150,000,000 km. This gives us 225,000,000 / 150,000,000 = 1.5 AU. Therefore, the distance between Earth and Mars in AU is 1.5 AU.
The AU is not equivalent to a light-year. A light-year is equivalent to around 9.5 x 10^12 kilometers.

4 0
3 years ago
Other questions:
  • I throw a stone off a cliff 32 feet above the water.  The height of the stone in terms of time (in seconds) is given by h(t) = -
    10·1 answer
  • Which force requires contact?
    9·1 answer
  • A geneticist looks through a microscope to determine the phenotype of a fruit fly. The microscope is set to an overall magnifica
    8·1 answer
  • À stone is thrown
    6·1 answer
  • Where do consumers get their nitrogen from?
    12·1 answer
  • Why does it rain more in West Ferris than in East Ferris? Explain your answer.
    5·1 answer
  • Which statement compares the strengths of electric forces between particles of matter?
    5·1 answer
  • How is work and energy inter-related?? (in simple words)​
    14·1 answer
  • Can somebody please help me? PLEASE
    8·1 answer
  • Abishek is a runner. He runs the 100 m sprint
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!