1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldier1979 [14.2K]
3 years ago
10

Someone pls answer! i will give u brainliest

Physics
2 answers:
serious [3.7K]3 years ago
5 0
I think it’s liquid.
olya-2409 [2.1K]3 years ago
4 0

Answer:

Liquid

Explanation:

Before anything evaporates, it is in a liquid state.

You might be interested in
Underground water is being pumped into a pool whose cross section is 3 m x 4 m while water is discharged through a 0.076m-diamet
Svetllana [295]
Given:

Area of pool = 3m×4m
Diameter of orifice = 0.076m
Outlet Velocity = 6.3m/s
Accumulation velocity = 1.5cm/min

Required:

Inlet flowrate

Solution:

The problem can be solved by this general formula.

Accumulation = Inlet flowrate - Outlet flowrate
Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice

First, we need to convert the units of the accumulation velocity into m/s to be consistent.

Accumulation velocity = 1.5cm/min × (1min/60s)×(1m/100cm)
Accumulation velocity = 0.00025 m/s

We then calculate the area of the pool and the area of the orifice by:

Area of pool = 3 × 4 m²
Area of pool = 12m²

Area of orifice = πd²/4 = π(0.076m)²/4
Area of orifice = 0.00454m²

Since we have all we need, we plug in the values to the general equation earlier

Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice

0.00025 m/s × 12m² = Inlet flowrate - 6.3m/s × 0.00454m²

Transposing terms,

Inlet flowrate = 0.316 m³/s
6 0
3 years ago
When an object reflects all the light waves that strike it looks white or black?
egoroff_w [7]
Light waves can be from any color, depends on what it is bouncing no or reflecting off of.
3 0
3 years ago
A narrow beam of light from a laser travels through air (n = 1.00) and strikes the surface of the water (n = 1.33) in a lake at
Natalka [10]

Answer:

A) d = 11.8m

B) d = 4.293 m

Explanation:

A) We are told that the angle of incidence;θ_i = 70°.

Now, if refraction doesn't occur, the angle of the light continues to be 70° in the water relative to the normal. Thus;

tan 70° = d/4.3m

Where d is the distance from point B at which the laser beam would strike the lakebottom.

So,d = 4.3*tan70

d = 11.8m

B) Since the light is moving from air (n1=1.00) to water (n2=1.33), we can use Snell's law to find the angle of refraction(θ_r)

So,

n1*sinθ_i = n2*sinθ_r

Thus; sinθ_r = (n1*sinθ_i)/n2

sinθ_r = (1 * sin70)/1.33

sinθ_r = 0.7065

θ_r = sin^(-1)0.7065

θ_r = 44.95°

Thus; xonsidering refraction, distance from point B at which the laser beam strikes the lake-bottom is calculated from;

d = 4.3 tan44.95

d = 4.293 m

4 0
3 years ago
A boy throws a baseball onto a roof and it rolls back down and off the roof with a speed of 4.05 m/s. If the roof is pitched at
AlekseyPX

(a) The time the baseball spends in the air is 0.92 s.

(b) The horizontal distance from the roof edge to the point where the baseball lands on the ground is 3.1 m.

<h3>Time spent in air by the baseball</h3>

h = vt - ¹/₂gt²

-2.1 = (4.05 x sin 34)t  - ¹/₂(9.8)(t²)

-2.1 = 2.26t - 4.9t²

4.9t² - 2.26t - 2.1 = 0

t = 0.92 s

<h3>Horizontal distance traveled by the baseball</h3>

R = Vx(t)

R = (4.05 x cos 34)(0.92)

R = 3.1 m

Thus, the time the baseball spends in the air is 0.92 s.

The horizontal distance from the roof edge to the point where the baseball lands on the ground is 3.1 m.

Learn more about horizontal distance here: brainly.com/question/24784992

#SPJ1

8 0
2 years ago
An astronaut drops a hammer from 2.0 meters above the surface of the moon. if the acceleration due to gravity on the moon is 1.6
aivan3 [116]

Answer:

1.57 s

Explanation:

Since the motion of the hammer is a uniformly accelerated motion, the distance covered by the hammer in a time t is

S=\frac{1}{2}at^2

Where, in this case

S = 2.0 m is the distance covered

a = 1.62 m/s^2 is the acceleration due to gravity

t is the time taken

Re-arranging the equation, we can find the time the hammer takes:

t=\sqrt{\frac{2S}{a}}=\sqrt{\frac{2(2.0 m)}{1.62 m/s^2}}=1.57 s

8 0
3 years ago
Read 2 more answers
Other questions:
  • Imagine a ringing bell set inside a sealed glass jar. Once all the air is removed and a vacuum is crated, the ringing sound is n
    8·1 answer
  • A heavy boy and a lightweight girl are balanced on a massless seesaw. The boy moves backward, increasing his distance from the p
    6·1 answer
  • Two straight wires are in parallel and carry electrical currents in opposite directions with the same magnitude of 2.0A. The dis
    15·1 answer
  • Evolutionary psychology is a relatively new approach to psychology that has been especially influenced by
    15·2 answers
  • Describe the process you used to build a model
    12·1 answer
  • In a motor, electrical current enters through the brushes. <br> a. True<br> b. False
    13·1 answer
  • Frequency, period and wavelength<br> 11th grade high school physics
    14·1 answer
  • FIRST PERSON WILL BE MARKED BRAINLIEST! 50 POINTS!
    5·1 answer
  • During the rainy season, we can observe lighting in the sky. Due to lighting, the atmospheric
    8·1 answer
  • Air in a thundercloud expands as it rises. If its initial temperature is 292 K and no energy is lost by thermal conduction on ex
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!