Answer:

Explanation:
Given that:
- Area of the plate of capacitor 1= Area of the plate of capacitor 2=A
- separation distance of capacitor 2,

- separation distance of capacitor 1,

- quantity of charge on capacitor 2,

- quantity of charge on capacitor 1,

We know that the Capacitance of a parallel plate capacitor is directly proportional to the area and inversely proportional to the distance of separation.
Mathematically given as:
.....................................(1)
where:
k = relative permittivity of the dielectric material between the plates= 1 for air

From eq. (1)
For capacitor 2:

For capacitor 1:

![C_1=\frac{1}{2} [ \frac{k.\epsilon_0.A}{d}]](https://tex.z-dn.net/?f=C_1%3D%5Cfrac%7B1%7D%7B2%7D%20%5B%20%5Cfrac%7Bk.%5Cepsilon_0.A%7D%7Bd%7D%5D)
We know, potential differences across a capacitor is given by:
..........................................(2)
where, Q = charge on the capacitor plates.
for capacitor 2:


& for capacitor 1:


![V_1=8\times [\frac{Q.d}{k.\epsilon_0.A}]](https://tex.z-dn.net/?f=V_1%3D8%5Ctimes%20%5B%5Cfrac%7BQ.d%7D%7Bk.%5Cepsilon_0.A%7D%5D)

Initial height: 66.5 m
Explanation:
The problem can be solved by using the principle of conservation of energy.
If we neglect air resistance, the total mechanical energy of the car is conserved during the fall, therefore we can write:
where
:
is the kinetic energy of the car at the top (it starts from rest)
is the gravitational potential energy of the car at the top, with:
m = the mass of the car
g = the acceleration of gravity
h = the heigth of the car
is the kinetic energy of the car just before hitting the ground, with
v = 130 km/h final speed of the car
is the gravitational potential energy of the car at the bottom
Re-arranging the equation, we find
and we have:
Solving for h, we find the initial height of the car:

Learn more about kinetic energy and potential energy:
brainly.com/question/6536722
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
<u>Hello and Good Morning/Afternoon</u>:
<em>Original Question: C₂H₅OH + __O₂ → __CO₂ + __ H₂O</em>
<u>To balance this equation</u>:
⇒ must ensure that there is an equal number of elements on both sides of the equation at all times
<u>Let's start balancing:</u>
- On the left side of the equation, there are 2 carbon molecule
⇒ but only so far one on the right side
C<em>₂H₅OH + __O₂ → 2CO₂ + __ H₂O</em>
- On the left side of the equation, there are 6 hydrogen molecules
⇒ but only so far two on the right side
C<em>₂H₅OH + __O₂ → 2CO₂ + 3H₂O</em>
- On the right side of the equation, there are 7 oxygen molecules
⇒ but only so far three on the left side
C<em>₂H₅OH + 3O₂ → 2CO₂ + 3H₂O</em>
<u>Let's check and make sure we got the answer:</u>
C<em>₂H₅OH + 3O₂ → 2CO₂ + 3H₂O</em>
<em> 2 Carbon ⇔ 2 Carbon</em>
<em> 6 Hydrogen ⇔ 6 Hydrogen</em>
<em> 7 Oxygen ⇔ 7 oxygen</em>
<u>Thefore the coefficients in order are</u>:
⇒ 1, 3, 2, 3
<u>Answer: 1,3,2,3</u>
Hope that helps!
#LearnwithBrainly<em> </em>
In mechanics, an impact is a highforce or shock applied over a short time period when two or more bodies collide. Such a force or acceleration usually has a greater effect than a lower force applied over a proportionally longer period. ... Resilient materials will have betterimpact resistance.