1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Misha Larkins [42]
3 years ago
5

The bandgap of InP semiconductor laser is 1.0 eV. The effective mass of the valence band is ½ of the effective mass of the condu

ction band. Assuming that electron hole recombination transition occurs at 0.03 eV above the bandgap, calculate the wavelength of this transition.

Physics
1 answer:
klemol [59]3 years ago
4 0

Answer: the wavelength of this transition is 1.2039 um

Explanation:

Given that;

the energy level between the transitioning energy gap Eg = 1.0 + 0.03 = 1.03 eV

we know that λ = 1.24 / Eg

so we substitute our Eg into the above equation

λ = 1.24 / 1.03

λ = 1.2039 um

therefore the wavelength of this transition is 1.2039 um  

You might be interested in
Even if all stars were the same distance from Earth, their absolute magnitude and
k0ka [10]

Answer: True


hope this helps!

4 0
2 years ago
Trucks 1 and 2 are traveling at the same constant velocity but truck 1's energy due to motion is two times less than that of tru
brilliants [131]
Kinetic energy = 0.5 * m * v²

m mass
v velocity

If the velocity stays the same and the kinetic energy goes down by a factor of 2, the mass must go down by a factor of 2 also.
7 0
3 years ago
You are at the edge of a diving board that is 9 meters above the water. If you weigh 500 Newtons, what is your potential energy?
Semenov [28]

Answer:

4500 J

Explanation:

First, let's define some equations and derivations.

Our potential energy formula is:

  • \displaystyle U = mgh

Where <em>m </em>is mass (in kg), <em>g</em> is the gravitational constant (in m/s²), and <em>h</em> is height (in m).

We also know that <em>mg</em> is equal to the weight of an object (in N), from Newton's 2nd Law of Motion: F = ma (Force is equal to [constant] mass times acceleration).

Therefore, we can simply substitute force into the equation:

  • \displaystyle U = Fh

Where <em>F</em> is the force (in N) and <em>h</em> is still height (in m).

Now we can calculate the amount of potential energy in our system, measured in joules.

Substitute in the given variables, F = 500 N and h = 9 m:

  • \displaystyle U = (500 \ N)(9 \ m)

Using simple Pre-Algebra rules, we find that:

  • \displaystyle U = 4500 \ J

This tells us that the we have 4500 joules of potential energy when I am 9 meters above the water on the edge of the diving board.

6 0
3 years ago
Read 2 more answers
Brayden and Riku now use their skills to work a problem. Find the equivalent resistance, the current supplied by the battery and
Liono4ka [1.6K]

a) 5 \Omega, 1.6 A

b) 6 \Omega, 1.33 A

Explanation:

a)

In this situation, we have two resistors connected in series.

The equivalent resistance of resistors in series is equal to the sum of the individual resistances, so in this circuit:

R=R_1+R_2

where

R_1=4\Omega

R_2=1 \Omega

Therefore, the equivalent resistance is

R=4+1=5 \Omega

Now we can use Ohm's Law to find the current flowing through the circuit:

I=\frac{V}{R}

where

V = 8 V is the voltage supplied by the battery

R=5\Omega is the equivalent resistance of the circuit

Substituting,

I=\frac{8}{5}=1.6 A

The two resistors are connected in series, therefore the current flowing through each resistor is the same, 1.6 A.

b)

In this part, a third resistor is added in series to the circuit; so the new equivalent resistance of the circuit is

R=R_1+R_2+R_3

where:

R_1=4\Omega\\R_2=1\Omega\\R_3=1\Omega

Substituting, we find the equivalent resistance:

R=4+1+1=6 \Omega

Now we can find the current through the circuit by using again Ohm's Law:

I=\frac{V}{R}

where

V = 8 V is the voltage supplied by the battery

R=6\Omega is the equivalent resistance

Substituting,

I=\frac{8}{6}=1.33 A

And the three resistors are connected in series, therefore the current flowing through each resistor is the same, 1.33 A.

3 0
3 years ago
What is the period of a simple pendulum 47 cm long (a) on the Earth, and ( b) when it is in a freely falling elevator?
Liula [17]

Answer:

a)1.37 s

b)∞ ( Infinite)

Explanation:

Given that

L= 47 cm              ( 1 m =100 cm)

L= 0.47 m

a)

On the earth :

Acceleration due to gravity = g

We know that time period of the simple pendulum given as

T=2\pi\sqrt{ \dfrac{L}{g_{{eff}}}

Here

g_{eff}= g

Now by putting the values

T=2\pi \times\sqrt{ \dfrac{0.47}{9.81}}

T=1.37 s

b)

Free falling elevator :

When elevator is falling freely then

g_{eff}= 0            ( This is case of weightless motion)

Therefore

T=2\pi\sqrt{ \dfrac{L}{0}

T=∞  (Infinite)

6 0
3 years ago
Other questions:
  • You have two springs. one has a greater spring constant than the other. you also have two objects, one with a greater mass than
    10·1 answer
  • What is the formula for amplitude?
    9·1 answer
  • What speed must an electron have if its momentum is to be the same as that of an x-ray photon with a wavelength of 0.20 nm?
    10·1 answer
  • The pioneer in the technique of photographic collage was:
    14·1 answer
  • Sally Leadfoot was pulled over on her way from Syracuse to Ithaca by an officer claiming she was speeding. The speed limit is 65
    14·1 answer
  • why people change their way of being They can be temporary or permanent changes. Other reasons why people change their attitudes
    9·1 answer
  • What is the main purpose of trying to quickly cool heated food?
    6·2 answers
  • Kūna veikia 3N jėga kurios petys 20 cm. Koks jos momentas?​
    9·1 answer
  • A system dissipates 12 JJ of heat into the surroundings; meanwhile, 28 JJ of work is done on the system. What is the change of t
    7·1 answer
  • 5) A 20.0 kg cart with no friction wheels sits on a table. A light string is attached to it and runs over a low friction pulley
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!