<u>Answer:</u> The boiling point of solution is 101.56°C
<u>Explanation:</u>
Elevation in boiling point is defined as the difference in the boiling point of solution and boiling point of pure solution.
The equation used to calculate elevation in boiling point follows:
To calculate the elevation in boiling point, we use the equation:
Or,
where,
Boiling point of pure water = 100°C
i = Vant hoff factor = 1 (For non-electrolytes)
= molal boiling point elevation constant = 0.52°C/m.g
= Given mass of solute (urea) = 27.0 g
= Molar mass of solute (urea) = 60 g/mol
= Mass of solvent (water) = 150.0 g
Putting values in above equation, we get:
Hence, the boiling point of solution is 101.56°C
Answer:
Search by reactants (P 2O 5, H 2O) and by products (H 3PO 4)
H2O + P2O5 → H3PO4
H2O + HNO3 + P2O5 → H3PO4 + N2O5
Answer:
1 g
Explanation:
The half-life of Am-242 (16 h) is the time it takes for half of it to disappear.
We can make a table of the mass left after each half-life.
The mass remaining after 48 h is 1 g.
Answer:
cell :—
•They lack a well-defined nucleus, have a nucleoid instead.
•Usually have double-stranded, circular DNA.
•Do not have mitochondria.
Eukaryotic cell :—
•Have a well-defined nucleus enclosed in the nuclear membrane.
•Have a linear double-stranded nucleus.
•Mitochondria are present.
Explanation:
Balloon that an ocean diver takes to a pressure of 202 k Pa will get reduced in size that is the volume of the balloon will get reduced. This is because pressure and volume of the gas are inversely related to each other.
According to Boyle's law: The pressure of the gas is inversely proportional to the volume occupied by the gas at constant temperature(in Kelvins).
(At constant temperature)
The pressure beneath the sea is 202 kPa and the atmospheric pressure is 101.3 kPa . This increase in pressure will result in decrease in volume occupied by the gas inside the balloon with decrease in size of a balloon. Hence, the size of the balloon will get reduced at 202 kPa (under sea).