Answer:
MnSO₄.7H₂O
Explanation:
To solve this question, we need to convert the mass of the dehydrated MnSO₄. The difference between mass of the hydrate and dehydrated compound is the mass of water. With the mass we can find the moles of water and the formula of the hydrate:
<em>Moles MnSO₄ -Molar mass: 151g/mol-:</em>
17.51g * (1mol / 151g) = 0.116 moles
<em>Moles H₂O -Molar mass: 18g/mol-:</em>
32.14g-17.51g = 14.63g * (1mol / 18g) = 0.813 moles
The ratio of moles MnSO₄: Moles H₂O represent the amount of water molecules in the hydrate:
0.813mol / 0.116mol = 7 molecules of water.
The hydrate formula is:
<h3>MnSO₄.7H₂O</h3>
Answer:
My Neighbor Totoro
Princess Mononoke
Pom Poko
Only Yesterday
Kiki's Delivery Service
Nausicaä of the Valley of the Wind
Answer:
b
Explanation:
An acid-base titration is an experimental procedure used to determined the unknown concentration of an acid or base by precisely neutralizing it with an acid or base of known concentration. ... It is filled with a solution of strong acid (or base) of known concentration.
Answer:
Density = 11.4 g/cm³
Explanation:
Given data:
Density of lead = ?
Height of lead bar = 0.500 cm
Width of lead bar = 1.55 cm
Length of lead bar = 25.00 cm
Mass of lead bar = 220.9 g
Solution:
Density = mass/ volume
Volume of bar = length × width × height
Volume of bar = 25.00 cm × 1.55 cm × 0.500 cm
Volume of bar = 19.4 cm³
Density of bar:
Density = 220.9 g/ 19.4 cm³
Density = 11.4 g/cm³