The energy is transferred throughout the rest of the metal by the moving electrons. Metals are described as
malleable (can be beaten into sheets) and ductile (can be pulled out into wires). This is because of the ability of the atoms to roll over each other into new positions without breaking the metallic bond.
<u>Answer:</u> The true statement is iron can reduce
to gold metal
<u>Explanation:</u>
Single displacement reaction is defined as the reaction in which more reactive element displaces a less reactive element from its chemical reaction.
The reactivity of metal is determined by a series known as reactivity series. The metals lying above in the series are more reactive than the metals which lie below in the series.

Metal A is more reactive than metal B.
We are given:
Iron can reduce copper, silver can reduce gold, sodium can reduce iron and copper can reduce silver metal.
The increasing order of reactivity thus follows:

where, sodium is most reactive and gold is least reactive
For the given options:
<u>Option 1:</u> Copper cannot easily reduce sodium ion to sodium metal because it is less reactive.

<u>Option 2:</u> Iron cant easily reduce gold ion to gold metal because it is more reactive.

<u>Option 3:</u> Silver cannot easily reduce iron ion to iron metal because it is less reactive.

Hence, the true statement is iron can reduce
to gold metal
Answer:
The standard enthalpy of formation of this isomer of octane is -220.1 kJ/mol
Explanation:
Step 1: Data given
The combustion reaction of octane produces 5104.1 kJ per mol octane
Step 2: The balanced equation
C8H18(g) + 12.5 O2 ⟶ 8CO2 (g) + 9 H2O (g) ∆H°rxn = -5104.1 kJ/mol
Step 3:
∆H°rxn = ∆H°f of products minus the ∆H° of reactants
∆H°rxn = ∆H°f products - [∆H°f reactants]
-5104.1 kJ/mol = (8*∆H°fCO2 + 9*∆H°fH20) - (∆H°fC8H18 + 12.5∆H°fO2)
∆H°f C8H18 = ∆H°f 8CO2 + ∆H°f 9H2O+ 5104.1 kJ/mol
∆H°f C8H18 = 8 * (-393.5 kJ)/mol + 9 * (-241.8 kJ/mol)] + 5104.1 kJ
/mol
∆H°f C8H18 = -220.1 kJ/mol
The standard enthalpy of formation of this isomer of octane is -220.1 kJ/mol