Answer:
Unbalanced forces change the motion of an object. If an object is at rest and an unbalanced force pushes or pulls the object, it will move. Unbalanced forces can also change the speed or direction of an object that is already in motion.
I think it's The fossil record. The same animal fossil is in Africa and South America. The animal could have not swim across so its the fossil record
Answer:
they rise in temperature
Explanation:
when there being compressed theres more pressure causing heat
A 59 kg sprinter, starting from rest, runs 47 m in 7.0 s at constant acceleration.?
What is the sprinter's power output at 2.0 s, 4.0 s, and 6.0 s?
Instantaneous Power is the force times velocity
P = Fv
Because the acceleration is constant, the force will be constant as well
F = ma
P = mav
for constant acceleration, the velocity at each time is found using
v = at
P = ma(at) = ma²t
find the acceleration using kinematic equation
s = ½at²
a = 2s/t²
a = 2(47) / 7.0²
a = 1.918 m/s²
P(2.0) = 59(1.918²)2.0 = 434.25 W = 0.43 kW
P(4.0) = 59(1.918²)4.0 = 868.51 W = 0.87 kW
P(6.0) = 59(1.918²)6.0 = 1302.76 W = 1.3 kW
I hope this helped.
The question doesn't give us enough information to answer.
The answer depends on the mass of the object, how long the force
acts on the object, the OTHER forces on the object, and whether the
object is free to move.
-- If you increase the force with which you push on a brick wall,
the amount of work done remains unchanged, namely Zero.
-- If you push on a pingpong ball with a force of 1 ounce for 1 second,
the ball accelerates substantially, it moves a substantial distance, and
so the work done is substantial.
-- But if you push on a battleship, even with a much bigger force ...
let's say 1 pound ... and keep pushing for a month ... the ship accelerates
microscopically, moves a microscopic distance, and the work done by
your force is microscopic.