Answer:
ramp b requires less force than ramp a
Explanation:
Mass of gold m₁ = 47 g
Initial temperature of gold T₁ = 99 C
Specific heat of gold C₁ = 0.129 J/gC
final temperature T₂ = 38 C
Heat needed by the gold to cool down
Q =m₁ * C₁* ( T₁ - T₂)
Q = (47)(0.129)(99-38)
Q = 369.843 J
This heat will be given by the water
we need to find out mass of water m₂
and initial temperature of water is T₃ = 25 C
Specific heat of water C₂ = 4.184 J/gC
Q = m₂*C₂*(T₂ - T₃)
369.843 = m₂(4.184)(38-25)
m₂ = 6.8 g
Answer:
18.60 m/s
Explanation:
Original momentum = mv = 4000 with m = 115
after collision m = 115 + 100 = 215 kg
but the total momentum is still the same (conserved)
4000 = 215 v shows v = 18.60 m/s
Wind is caused by differences in the atmospheric pressure. When a difference in atmospheric pressure exists, air moves from the higher to the lower pressure area, resulting in winds of various speeds. On a rotating planet, air will also be deflected by the Coriolis effect, except exactly on the equator.
First we need to find the current flowing in the circuit. The three resistors are in series, so the equivalent resistance of the circuit is the sum of the three resistances:

Then we can apply Ohm's law to the whole circuit, to find the current flowing:

And now we can apply Ohm's law to the resistor of

to find the voltage drop across it: