Answer:
0.75 NC⁻¹
Explanation:
Electric field intensity ( or strength of the electric field ) is the force per a 1 C charge,
So, Force (F) = Electric field intensity(E) × Charge (q)
F = E×q ⇒ q = F/E
= 4.5×10⁻⁴/6×10⁻⁴ = 0.75 NC⁻¹
According to cool om's law electric fields are generated due to charges. When charges are same there is a repulsive force acted on both charges. When charges are opposite there is a attraction force acted on both charges.
According to cool om's law,
F =G×q1×q2 / r²
F = force exerted of two charges
q1 , q2 = charges
r = distance between two charges
And also Electric field intensity is a vector which has a magnitude and direction both. Direction is depending on a charge and the sign of the charge
Mass does not affect the pendulum's swing. The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.
Answer:
v = 18.84 m/s
Explanation:
Given that,
The length of the string, r = 1.5 m (it will act as radius)
The rubber stopper makes 120 complete circles every minute.
Since, 1 minute = 60 seconds
It means, its frequency is 2 circles every second.
Let we need to find the average speed of the rubber stopper. It can be calculated as follows :

d is distance,
and 1/T = f (frequency)

So, the average speed of the rubber stopper is 18.84 m/s.
1. A wheelchair ramp. Instead of using lifting force on the wheelchair, You use push or pull force on it.
2. A slide. Instead of throwing down an item, It uses gravitational potential energy make an object "move" down the slide.
3.A screw. It's reducing the force by twisting the screw out of something instead of pulling it out. (Sorry about my bad grammar).
That depends on how far it is from the nearest planet. If it's on the surface of Earth, it weighs (19 kg) x (9.8 m/s^2) = 186.2 newtons.