Answer:

Explanation:
Using the conservation of energy we have:

Let's solve it for v:

So the speed at the lowest point is 
Now, using the conservation of momentum we have:

Therefore the speed of the block after the collision is 
I hope it helps you!
What's now called "Conventional current" is thought of as the flow of positive charge, from the battery's positive terminal to its negative one.
But it turns out that positive charges don't flow. The physical flow of charge is the flow of electrons. They come out of the battery's negative terminal, and carry negative charge around the circuit to the battery's positive one.
Answer:
T = 4 sec / 2 = 2 sec period of revolution
S = 2 pi R = 2 * pi * 1.75 m = 11 m
V = S / T = 11 m / 2 sec = 5.5 m/s speed of object
As per the question Bob drops the bag full with feathers from the top of the building.
The mass of the bag(m)= 1.0 lb
Let the air resistance is neglected.As the bag is under free fall ,hence the only force that acts on the bag is the force of gravity which is in vertical downward direction.
Here the acceleration produced on bag due to the free fall will be nothing else except the acceleration due to gravity i.e g =9.8 m/s^2
Here we are asked to calculate the distance travelled by the bag at the instant 1.5 s
Hence time t= 1.5 s
From equation of kinematics we know that -
S=ut + 0.5at^2 [ here S is the distance travelled]
For motion under free fall initial velocity (u)=0.
Hence S= 0×1.5+{0.5×(-9.8)×(1.5)^2}
⇒ -S =0-11.025 m
⇒ S= 11.025 m
=11 m
Here the negative sign is taken only due to the vertical downward motion of the body .we may take is positive depending on our frame of reference .
Hence the correct option is B.
Answer:
If efficiency is .22 then W = .22 * Q where Q is the heat input
Heat Input Q = 2510 / .22 = 11,400 J
Heat rejected = 11.400 - 2510 = 8900 J of heat wasted
Also, 8900 J / (4.19 J / cal) = 2120 cal