Answer:
970 kN
Explanation:
The length of the block = 70 mm
The cross section of the block = 50 mm by 10 mm
The tension force applies to the 50 mm by 10 mm face, F₁ = 60 kN
The compression force applied to the 70 mm by 10 mm face, F₂ = 110 kN
By volumetric stress, we have that for there to be no change in volume, the total pressure applied by the given applied forces should be equal to the pressure removed by the added applied force
The pressure due to the force F₁ = 60 kN/(50 mm × 10 mm) = 120 MPa
The pressure due to the force F₂ = 110 kN/(70 mm × 10 mm) = 157.142857 MPa
The total pressure applied to the block, P = 120 MPa + 157.142857 MPa = 277.142857 MPa
The required force, F₃ = 277.142857 MPa × (70 mm × 50 mm) = 970 kN
Answer:
fb = 240.35 Hz
Explanation:
In order to calculate the beat frequency generated by the first modes of each, organ and tube, you use the following formulas for the fundamental frequencies.
Open tube:
(1)
vs: speed of sound = 343m/s
L: length of the open tube = 0.47328m
You replace in the equation (1):
Closed tube:

L': length of the closed tube = 0.702821m

Next, you use the following formula for the beat frequency:

The beat frequency generated by the first overtone pf the closed pipe and the fundamental of the open pipe is 240.35Hz
Answer:
While the use of the type of transformer in a rectifier depends on the voltage requirement or to meet desired operating conditions, a step-down transformer is used mainly to reduce the voltage. It is used to bring the high AC voltage level to a reasonable value or the desired output voltage.
Explanation:
Hope it helps
Correct me if Im wrong
Answer:
15193.62 m/s
Explanation:
t = Time taken = 6.5 hours
u = Initial velocity = 0 (Assumed)
m = Mass of rocket = 1380 kg
F = Thrust force = 896 N
v = Final velocity
a = Acceleration of the rocket
Force

Equation of motion

The velocity of the rocket after 6.5 hours of thrust is 15193.62 m/s