Answer:
3 sigma lower control limit = 0.0429
Explanation:
Given.
n = 100
days = 100
Number of defective bulbs = 600 defective bulbs
Let p = Process Average
p = 600/(100*40)
P = 600/4000
P = 0.15
q = 1 - p
q = 1 - 0.15
q = 0.85
3 sigma lower limit = p - 3*√(pq/n)
Using the above formula
Substitute in the values
3 sigma lower control limit = 0.15 - 3 * √(0.15 * 0.85/100)
3 sigma lower control limit= 0.15 - 3√0.001275
3 sigma lower control limit = 0.15 - 3* 0.035707142142714
3 sigma lower control limit = 0.15 - 0.107121426428142
3 sigma lower control limit = 0.04287857357185
3 sigma lower control limit = 0.0429 ---- approximated
Answer:
The ability of our bodies to adapt to different levels of gravity. You would become weaker and your heart is use to zero gravity. Boredom because there isn't much to in space. When intelligent people get bored, it's not pretty all the time...
Answer:
The officer's unit detects this 135-mile-per-hour speed and should subtract the patrol car's 70-mile -per-hour ground speed to get your true speed of 65 miles per hour. Instead, the officer's ground-speed beam fixes on the truck ahead and measures a false 50-mile-per-hour ground speed.
Explanation:
A speedometer or speed meter is a gauge that measures and displays the instantaneous speed of a vehicle. Now universally fitted to motor vehicles, they started to be available as options in the early 20th century, and as standard equipment from about 1910 onwards.
Answer:
5.33kg
Explanation:
Given parameters:
Velocity of eagle = 15m/s
Kinetic energy of the eagle = 600J
Unknown:
Mass of the eagle = ?
Solution:
The kinetic energy of any body is the energy due to the motion of a body. There are different forms of kinetic energy some of which are thermal, mechanical, electrical energy.
The formula of kinetic energy is given as;
Kinetic energy =
m v²
where m is the mass, V is the velocity
substitute the parameters in the equation;
600 =
x m x 15²
225m = 1200
m =
= 5.33kg
Answer:
Option D: 21.8 degrees
Explanation:
In a parallel RL circuit, the current in the resistor R and that in the inductor L are separated among themselves 90 degrees as illustrated in the attached image. In the image the current in the resistor is represented in orange, that of the inductor in blue, and the total current (vector addition of the previous two) is represented in red, forming a certain angle (theta) with respect to the current in the resistor. The output voltage is the same as the input voltage as measured over the resistor R.
Therefore, the phase angle that separated output voltage and total current can be obtained using the fact that tan(phase angle) =
, therefore the angle is the arctangent of 4/10:
degrees.