Answer:
The skater has mechanical/gravitational potential energy at the two meter mark. The skater gets to two meters high on the other end of the ramp. In terms of the conservation of energy, the skater will never go higher than two meter on the other end of the the ramp because energy can be neither created nor destroyed.
Explanation:
I hoping it is right!!!∪∧∪ ∪ω∪
4*5=20; ration of 20:25,
20/25= %80
Answer:
The viscosity of a liquid is a measure of its resistance to flow. Water, gasoline, and other liquids that flow freely have a low viscosity. Honey, syrup, motor oil, and other liquids that do not flow freely, like those shown in Figure 1, have higher viscosities. We can measure viscosity by measuring the rate at which a metal ball falls through a liquid (the ball falls more slowly through a more viscous liquid) or by measuring the rate at which a liquid flows through a narrow tube (more viscous liquids flow more slowly).
Answer:
Therefore,
The potential (in V) near its surface is 186.13 Volt.
Explanation:
Given:
Diameter of sphere,
d= 0.29 cm


Charge ,

To Find:
Electric potential , V = ?
Solution:
Electric Potential at point surface is given as,

Where,
V= Electric potential,
ε0 = permeability free space = 8.85 × 10–12 F/m
Q = Charge
r = Radius
Substituting the values we get


Therefore,
The potential (in V) near its surface is 186.13 Volt.
Pressure and temperature are the variables in Gay-Lussac's law.
The law states that a pressure of a gas is directly proportional to the gas' temperature if the mass and volume are fixed. This means that there are only two variables, as the other two values are fixed: only pressure and temperature can change according to this law.