Answer:
Explanation:
Entropy is the degree of randomness of a system which it can increases as the temperature of the reactants is increased to yield product.
Answer:
I don't think so because we can't breathe in space
Explanation:
Answer:
λ = 2.7608 x 10⁻⁷ m = 276.08 nm
Explanation:
The work function of a metallic surface is the minimum amount of photon energy required to release the photo-electrons from the surface of metal. The work function is given by the following formula:
Work Function = hc/λ
where,
Work Function = (4.5 eV)(1.6 x 10⁻¹⁹ J/1 eV) = 7.2 x 10⁻¹⁹ J
h = Plank's Constant = 6.626 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = longest wavelength capable of releasing electron.
Therefore,
7.2 x 10⁻¹⁹ J = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/λ
λ = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(7.2 x 10⁻¹⁹ J)
<u>λ = 2.7608 x 10⁻⁷ m = 276.08 nm</u>
Answer:
The energy that the truck lose to air resistance per hour is 87.47MJ
Explanation:
To solve this exercise it is necessary to compile the concepts of kinetic energy because of the drag force given in aerodynamic bodies. According to the theory we know that the drag force is defined by

Our values are:




Replacing,


We need calculate now the energy lost through a time T, then,

But we know that d is equal to

Where
v is the velocity and t the time. However the time is given in seconds but for this problem we need the time in hours, so,

(per hour)
Therefore the energy that the truck lose to air resistance per hour is 87.47MJ
Acceleration is the rate of change of a the velocity of an object that is moving. This value is a result of all the forces that is acting on an object which is described by Newton's second law of motion. Calculation of such is straightforward, if we are given the final velocity, the initial velocity and the total time interval. We can just use the kinematic equations. However, if we are not given the final velocity, it would not be possible to use the kinematic equations. One possible to calculate this value would be by generating an equation of distance with respect to time and getting the second derivative of the equation.