Answer:
1 C
Explanation:
The intensity of electric current is defined as

where
I is the current
q is the amount of charge transferred
t is the time interval during which the charge is transferred
For the lightning in this problem, we have
is the current
is the time interval
Solving the formula for q, we find the amount of charge transferred:

The gravitational force between <em>m₁</em> and <em>m₂</em> has magnitude

while the gravitational force between <em>m₁</em> and <em>m₃</em> has magnitude

where <em>x</em> is measured in m.
The mass <em>m₁</em> is attracted to <em>m₂</em> in one direction, and attracted to <em>m₃</em> in the opposite direction such that <em>m₁</em> in equilibrium. So by Newton's second law, we have

Solve for <em>x</em> :

The solution with the negative square root is negative, so we throw it out. The other is the one we want,

Answer:
4.5 W
Explanation:
Applying,
P = V²/(R₁+R₂).................. Equation 1
Where P = Power, V = Voltage, R₁ and R₂ = values of the two resistor.
From the question,
Given: V = 9.00 V, R₁ = 7.00 Ω, R₂ = 11.00 Ω
Substitute these values into equation 1
P = 9²/(7+11)
P = 81/(18)
P = 4.5 Watt.
Hence the power dessipated by the two resistors is 4.5 watt
Percent error is the difference between the experimental value and theoretical value and measures the accuracy of the result found. The larger the error, lesser is the accuracy and vice versa.
Solution:
It is a mathematical way of showing accuracy
The higher the percent error, the less accurate the data set,
Answer:
Explanation:
Given
initially mass is stretched to 
Let k be the spring Constant of spring
Therefore Total Mechanical Energy is 
Position at which kinetic Energy is equal to Elastic Potential Energy


it is given

thus 


