Answer:
1. 4-ethyl-1-heptene
2. 6-ethyl-2-octene
3. 1-butyne
Explanation:
The compounds are named according to IUPAC rules.
Compound 1:
- Identify the longest carbon chain. This chain is called the parent chain.
- Identify all of the substituents (groups appending from the parent chain).
- The parent chain is numbered so that the multiple bonds have the lowest numbers (double has the priority over alkyl substituents).
- The longest chain contains 7 carbon atoms, so taken the name hept.
- The double bond between C1 and C2, so take no. 1 and add the suffix ene to hept "1-heptene".
- The ethyl group is the alkyl substituent on position 4.
- So the name is 4-ethyl-1-heptene.
Compound 2:
- Identify the longest carbon chain. This chain is called the parent chain.
- Identify all of the substituents (groups appending from the parent chain).
- The parent chain is numbered so that the multiple bonds have the lowest numbers (double has the priority over alkyl substituents).
- The longest chain contains 8 carbon atoms, so taken the name oct.
- The double bond between C2 and C3, so take no. 2 and add the suffix ene to oct "2-octene".
- The ethyl group is the alkyl substituent on position 6.
- So the name is 6-ethyl-2-octene.
Compound 3:
- Identify the longest carbon chain. This chain is called the parent chain.
- Identify all of the substituents (groups appending from the parent chain), there is no substituents.
- The parent chain is numbered so that the multiple bonds have the lowest numbers (Triple bond here take the lowest number).
- The longest chain contains 4 carbon atoms, so taken the name but.
- The triple bond between C1 and C2, so take no. 1 and add the suffix yne to but "1-butyne".
Answer:
The primary producer would be at the bottom of the food chain.
Explanation:
Answer:
Yes
Explanation:
Isotopes are atoms of the same element that have different numbers of neutrons in their nuclei. Everything else about them is the same.(If you want more explanation tell me).
Answer:
B) Symmetrical and nonpolar
Step-by-step explanation:
The formula is H-C≡C-H.
Each C atom has <em>two</em> electron regions, so VSEPR theory predicts a <em>linear molecular geometry</em> (see image below).
The molecule is symmetrical, because the green line divides the molecule into two halves that are mirror images of each other.
The C-H bonds are slightly polar, because C is more electronegative than H (µ ≈ 0.4 D).
The C atoms are partially negative (red), while the H atoms are partially positive (blue).
However, the two C-H bond dipoles point in <em>opposite directions</em>, so they cancel each other. The molecule has <em>no net dipole moment.</em>
Acetylene is nonpolar.