If the angle is either 0 or 180, that means that there is either negative or positive work, so A and D are not correct.
If the angle is 45, then there is still some work involved.
The only option where there is no work done by a force is B. when the angle is between the force and displacement is 90.
1. 100 C
2. Point B to C is the ices heat capacity
3. During the points D to E the bonds of the water molecules build up enough kinetic energy to break their intermolecular bonds (not intra), which can lead to gas.
4. Between points D and E the energy is being released the energy required is equivalent along the line.
5. Between point E and D the water is converting to water (condensation)
6. Energy is being released 2260 j/g
7. Yes, but only under extreme volumetric pressures
8. D and E or B and C
9. Freezing (the water is also becoming less dense)
10. Melting or if water already, absorbtion of energy
11. released.
Answer:
With less energy at higher trophic levels, there are usually fewer organisms as well
Explanation: Organisms tend to be larger in size at higher trophic levels, but their smaller numbers result in less biomass. Biomass is the total mass of organisms at a trophic level.
Answer:
The final temperature of hydrogen gas is 537.63 K.
Explanation:
Given data:
Initial volume = 2.00 L
Initial pressure = 740 mmHg (740/760 = 0.97 atm)
Initial temperature = 25 °C (25 +273 = 298 K)
Final temperature =?
Final volume = 3.50 L
Final pressure = standard = 1 atm
Formula:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
P₁V₁/T₁ = P₂V₂/T₂
T₂ = P₂V₂T₁ / P₁V₁
T₂ = 1 atm × 3.5 L × 298 K / 0.97 atm × 2.00 L
T₂ = 1043 atm .L. K / 1.94 atm. L
T₂ = 537.63 K
My answer is A. I'm probably wrong. in bad in this subject