Answer: C₂H₄+3 O₂= 2 CO₂+ 2 H₂O
Explanation:
Answer:
Molar mass
Explanation:
This is a counting unit which represents the mass in grams of a substance that make up one mole of the substance. This mass is calculated as follows:
Molar mass = Mass/ Number of moles
Units: grams/mol
Answer: The beaker will not tip over when placed on the hot plate
Justification:
Since beakers have flat surface bottoms (usually and this is the condition to use them for this particular application) they can be placed safely on the hot plate without the risk that the they tip over.
Beakers are wide mouth cylindrical vessels used in laboratories to store, mix and heat liquids. Most are made of glass, in which case the glass is resistant to the flame and does not break when exposed to high temperatures or when is heated by direct contact on a hot plate.
So, their safe shape (flat bottom) that makes them stable, along with their ability to withstand high temperatures, make them suitable to heat solutions in laboratories.
Answer:
Answer of question a is 345J.
Explanation:
In question a following is given in data:
-mass of iron (m) = 10.0 g
-temperature (ΔT) = final temperature- initial temperature= 100-25= 75 degree Celsius
-Specific Heat capacity of iron (c)= 0.46J/g°C.
Heat (Q)=?
Solution:
Formula for Heat is :
Q=m x c x ΔT
Q= 10 x 0.46 x 75
Q= 345 J.
so, 345 joules of heat is needed to increase the temperature of 10 grams of iron.
- From the above formula all other questions can easily be solved from the same procedure.
You have to use Dalton's law of partial pressure for this question. Dalton's law of partial pressure basically states that the total pressure of the system is all of the partial pressures of the components added together. Therefore to answer the question you just need to add all the patial pressures together meaning that the total pressure would be 700+500+500=1700.
The answer would be 1700 torr.
I hope this helps. Let me know if anything is unclear or if you have any further questions.