Answer:

Explanation:
» The prediction is 98% correct because single displacement reaction type is highly possible.
This is because Fluorine has is more electronegative than Chlorine in Potassium Chloride. So, it strongly displaces Chlorine from the solution hence forming Chlorine gas.
» The 2% of wrong prediction maybe because of wrong reactant measurements following mole concept chemistry.
If you are asked the observation,
Observation » <u> </u><u>A</u><u> </u><u>green</u><u> </u><u>yellowish</u><u> </u><u>gas</u><u> </u><u>is</u><u> </u><u>formed</u><u>.</u>
This gas is Chlorine gas (Cl2)
What your question for number 3
Answer:
The answer is C) The temperature at which the solid-state turns into liquid
Explanation:
The melting point of a substance is the temperature at which it shifts state from solid to liquid. At the melting point, the solid and liquid levels exist in equilibrium. As heat is applied to a solid, its temperature will increase until the melting point is reached. More heat then will convert the solid into a liquid with no temperature change. This occurs when the internal energy of the solid increases, commonly by the application of heat or pressure, which increases the substance's temperature to the melting point.
<span> iron (Fe), ruthenium (Ru), osmium (Os) and hassium (Hs). They are all transition metals.</span>
Answer: Option (d) is the correct answer.
Explanation:
In solids, molecules are held together by strong intermolecular forces of attraction. As a result, they are unable to move from their initial position and can only vibrate at their mean position.
Hence, a solid has definite shape and volume. Solids cannot be compressed.
Whereas in plasma, molecules are hot ionized which include positively charged ions and negatively charged electrons. They collide much more rapidly with each other and are widely spreaded out.
Therefore, they occupy the volume of container in which they are placed. Plasma can be compressed.
Thus, we can conclude that substance X is a solid and substance Y is a plasma.