V₁(O2) = 6.50<span> L
</span>p₁(O2) = 155 atm
V₂(acetylene) = <span>4.50 L
</span>p₂(acetylene) =?
According to Boyle–Mariotte law (At constant temperature and unchanged amount of gas, the product of pressure and volume is constant) we can compare two gases that have ideal behavior and the law can be usefully expressed as:
V₁/p₁ = V₂/p₂
6.5/155 = 4.5/p₂
0.042 x p₂ = 4.5
p₂ = 107.3 atm
Given the following in the problem:
Distances : 2.0 m and 4.0 m
Sound waves : 1700 hz
Speed of sound : 340 m/s
Get the wavelength of the sound by using the formula:
Lambda = speed of sound/sound waves
Lambda = 340 m/s / 1700 hz
Lambda = 0.2
Get the path length difference to the point from the two speakers
L1 = 4mL2 = sqrt (42+ 22) m
Delta = 4.47
x = delta / lambda
If the outcome is nearly an integer, the waves strengthen at the point. If it is nearly an integer +0.5 the waves interfere destructively at the point. If it is neither the point is somewhat in in the middle.
Solving x = (4.47 – 4) / (0.2) = 2.35 an integer +0.5 so it’s a point of destructive interference.
D.to bring light together
It runs on Hydrogen gas.
Actually, using hydrogen as a fuel is not new. We used to use it on air vehicle like air balloon. But back then, we still cannot figure out how to safely use this because Hydrogen exlodes rather easily