You're going to use the constant acceleration motion equation for velocity and displacement:
(V)final²=(V)initial²+2a(Δx)
Given:
a=0.500m/s²
Δx=4.75m
(V)intial=0m
(V)final= UNKNOWN
(V)final= 2.179m/s
Answer:
v = 88.89 [m/s]
Explanation:
To solve this problem we must use the principle of conservation of momentum which tells us that the initial momentum of a body plus the momentum added to that body will be equal to the final momentum of the body.
We must make up the following equation:

where:
F = force applied = 4000 [N]
t = time = 0.001 [s]
m = mass = 0.045 [kg]
v = velocity [m/s]
![4000*0.001=0.045*v\\v=88.89[m/s]](https://tex.z-dn.net/?f=4000%2A0.001%3D0.045%2Av%5C%5Cv%3D88.89%5Bm%2Fs%5D)
Answer:
IDHHHHH
Explanation:
vfdvbggggggggggrhhhhhttttttfdsgt
Lubricants, Magnetic Levitation, and Ball Bearing.
Closer u get 2 the center the more balanced out your weight will b