Since the density of the substance is ρ (rho),
==> every cm³ of this substance has ρ grams of mass.
Then
==> V cm³ of it has ρV grams of mass. That's ' m '.
and
==> 3V cm³ of it has 3ρV grams of mass. That's ' <em>3m</em> '.
Answer:
A) Rapidez
Explanation:
Speed is a scalar quantity and it is found by dividing the distance traveled by the time taken.
Speed =
Distance is the length of path covered whereas time is the duration of the travel.
Unlike velocity which is a vector, speed is a scalar quantity with only magnitude but no direction.
Answer:
2406 miles
Explanation:
Let A be the starting position, B the junction position and C the final position after flying the 3.5 hrs. Also, let b be the distance from the starting point:

#Distance traveled in 1.5hrs is;

#Distance traveled in next two hrs:

#Now using the Cosine Rule:

Hence, the pilot is 2406 miles from her starting position.
Answer:
The maximum height reached by the water is 117.55 m.
Explanation:
Given;
initial velocity of the water, u = 48 m/s
at maximum height the final velocity will be zero, v = 0
the water is going upwards, i.e in the negative direction of gravity, g = -9.8 m/s².
The maximum height reached by the water is calculated as follows;
v² = u² + 2gh
where;
h is the maximum height reached by the water
0 = u² + 2gh
0 = (48)² + ( 2 x -9.8 x h)
0 = 2304 - 19.6h
19.6h = 2304
h = 2304 / 19.6
h = 117.55 m
Therefore, the maximum height reached by the water is 117.55 m.
Answer:
A) T1 = 269.63 K
T2 = 192.59 K
B) W = -320 KJ
Explanation:
We are given;
Initial volume: V1 = 7 m³
Final Volume; V2 = 5 m³
Constant Pressure; P = 160 KPa
Mass; m = 2 kg
To find the initial and final temperatures, we will use the ideal gas formula;
T = PV/mR
Where R is gas constant of helium = R = 2.0769 kPa.m/kg
Thus;
Initial temperature; T1 = (160 × 7)/(2 × 2.0769) = 269.63 K
Final temperature; T2 = (160 × 5)/(2 × 2.0769) = 192.59 K
B) world one is given by the formula;
W = P(V2 - V1)
W = 160(5 - 7)
W = -320 KJ