Explanation:
the Moon passes between Earth and the Sun Even though the Moon is much smaller than the Sun, because it is just the right distance away from Earth, the Moon can fully block the Sun's light from Earth's perspective This completely blocks out the Sun's light
1) The correct answer is CME:
In fact, CME stands for "Coronal Mass Ejection", and they are huge release of plasma and magnetic field from the corona of the Sun.
2) The only statement that could be true is "<span>X and Y are both within the solar system."
In fact, the distance between X and Y is 30.2 AU (1 AU is the distance between Earth and Sun). Pluto, the farthest planet from the Sun, is located at approximately 40 AU from the Sun: the distance between X and Y is smaller than this value, so they could be both in the solar system.</span>
vf = vi + at
vf – vi = at<span>
<span>vi= 0, vf=26 and afor nil = 9.8m/s2</span></span>
26 = 9.8t
t =<span> 26 / 9.8 = 2.65 s
Now we know the total time, so we can calculate the time 1
second before it hit the ground.
<span>= 2.65 -1 = 1.65s
<span>Now again using the same equation, vf = vi+at, we can find vf
vi = 0, a = 9.8 t=1.65</span></span></span>
vf = 0 + 9.8(1.65) =
16.17 m/s<span>
</span><span>So,
the nail is traveling with the speed of 16.17m/s 1 second before it hits the
ground.</span>
Answer:
Because of the presence of air resistance
Explanation:
When an object is in free fall, ideally there is only one force acting on it:
- The force of gravity, W = mg, that pushes the object downward (m= mass of the object, g = acceleration of gravity)
However, this is true only in absence of air (so, in a vacuum). When air is present, it exerts a frictional force on the object (called air resistance) with upward direction (opposite to the motion of free fall) and whose magnitude is proportional to the speed of the object.
Therefore, it turns out that as the object falls, its speed increases, and therefore the air resistance acting against it increases too; as a result, the at some point the air resistance becomes equal (in magnitude) to the force of gravity: when this happens, the net acceleration of the object becomes zero, and so the speed of the object does not increase anymore. This speed reached by the object is called terminal velocity.
Answer:
finding the volume of an irregular shape