Answer:
1. 
2. 
Explanation:
1. According to Newton's law of motion, the puck motion is affected by the acceleration, which is generated by the push force F.
In Newton's 2nd law: F = ma
where m is the mass of the object and a is the resulted acceleration. So in the 2nd experiment, if we double the mass, a would be reduced by half.

Since the puck start from rest, in the 1st experiment, to achieve speed of v it would take t time

Now that acceleration is halved:


You would need to push for twice amount of time 
2. The distance traveled by the puck is as the following equation:

So if the acceleration is halved while maintaining the same d:

As
, then
. Also 



So t increased by 1.14
Answer:
2.36 x 10^6 J
Explanation:
Tc = 0°C = 273 K
TH = 22.5°C = 295.5 K
Qc = heat used to melt the ice
mass of ice, m = 85.7 Kg
Latent heat of fusion, L = 3.34 x 10^5 J/kg
Let Energy supplied is E which is equal to the work done
Qc = m x L = 85.7 x 3.34 x 10^5 = 286.24 x 10^5 J
Use the Carnot's equation


QH = 309.8 x 10^5 J
W = QH - Qc
W = (309.8 - 286.24) x 10^5
W = 23.56 x 10^5 J
W = 2.36 x 10^6 J
Thus, the energy supplied is 2.36 x 10^6 J.
The indicated data are of clear understanding for the development of Airy's theory. In optics this phenomenon is described as an optical phenomenon in which The Light, due to its undulatory nature, tends to diffract when it passes through a circular opening.
The formula used for the radius of the Airy disk is given by,

Where,
Range of the radius
wavelength
f= focal length
Our values are given by,
State 1:



State 2:



Replacing in the first equation we have:


And also for,


Therefor, the airy disk radius ranges from
to 
Answer:
C. Each capacitor carries the same amount of charge.
Explanation:
When two or more different capacitors are connected in series across a potential source, each capacitor carries the same amount of charge.
In a series connected capacitor, sane amount of charge flows through the capacitors while different potential difference is passed across them.
The capacitors have the same charge as the charge flowing out directly from the potential source called emf since the emf is the driving force of charge in a circuit.
3 is the answer to your question