A switch
What are the answers choices
The short answer is that the displacement is equal tothe area under the curve in the velocity-time graph. The region under the curve in the first 4.0 s is a triangle with height 10.0 m/s and length 4.0 s, so its area - and hence the displacement - is
1/2 • (10.0 m/s) • (4.0 s) = 20.00 m
Another way to derive this: since velocity is linear over the first 4.0 s, that means acceleration is constant. Recall that average velocity is defined as
<em>v</em> (ave) = ∆<em>x</em> / ∆<em>t</em>
and under constant acceleration,
<em>v</em> (ave) = (<em>v</em> (final) + <em>v</em> (initial)) / 2
According to the plot, with ∆<em>t</em> = 4.0 s, we have <em>v</em> (initial) = 0 and <em>v</em> (final) = 10.0 m/s, so
∆<em>x</em> / (4.0 s) = (10.0 m/s) / 2
∆<em>x</em> = ((4.0 s) • (10.0 m/s)) / 2
∆<em>x</em> = 20.00 m
<span>Crust. The thin solid outermost layer of Earth. ...Asthenosphere. The lower layer of the crust. ...Lithosphere.Plasticity: is solid but still being able to. flow without being a liquid.The cool, rigid outermost layer of the Earth. ...<span>the solid part of the earth consisting of the crust and outer mantle.</span></span>
Answer:
t = 2.01 s
Vf = 19.7 m/s
Explanation:
It's know through the International System that the earth's gravity is 9.8 m/s², then we have;
Data:
- Height (h) = 20 m
- Gravity (g) = 9.8 m/s²
- Time (t) = ?
- Final Velocity (Vf) = ?
==================================================================
Time
Use formula:
Replace:
Everything inside the root is solved first. So, we solve the multiplication of the numerator:
It divides:
The square root is performed:
==================================================================
Final Velocity
use formula:
Replace:
Multiply:
==================================================================
How long does it take to reach the ground?
Takes time to reach the ground in <u>2.01 seconds.</u>
How fast does it hit the ground?
Hits the ground with a speed of <u>19.7 meters per seconds.</u>
Answer:
Explanation:
So, we are looking for an expression of the amount of water that has been drained from the tub. The expression is in terms of v that represent the number of gallons of water drained since the plug was pulled. Since we are interested in the pounds of water that has been drained from the tub we need to take into account that for every gallon of water drained, 8.345 pounds have left the tub. Therefore, the expression for the weight of water Q that has been drained from the tub in terms of v is simply :
Where v is the amount of gallons that has been drained from the tub.
Have a nice day. let me know if I can help with anything else