Answer:
1058.78 ft/sec
Explanation:
Horizontal Component of Velocity; This is the velocity of a body that act on the horizontal axis. I.e Velocity along x-axis
The horizontal velocity of a body can be calculated as shown below.\
Vh = Vcos∅.......................... Equation 1
Where Vh = horizontal component of the velocity, V = The velocity acting between the horizontal and the vertical axis, ∅ = Angle the velocity make with the horizontal.
Given: V = 1178 ft/sec, ∅ = 26°
Substitute into equation 1
Vh = 1178cos26
Vh = 1178(0.8988)
Vh = 1058.78 ft/sec
Hence the horizontal component of the velocity = 1058.78 ft/sec
Period = 6 seconds and
.
<u>Explanation:</u>
We have , the motion of a swing that requires 6 seconds to complete one cycle. Period is the amount of time needed to complete one oscillation . And in question it's given that 6 seconds is needed to complete one cycle. Hence ,Period of the motion of a swing is 6 seconds . Frequency is the number of vibrations produced per second and is calculated with the formula of
. SI unit of frequency is Hertz or Hz. We know that time period is 6 seconds so frequency =
⇒ 
⇒ 
⇒ 
Therefore , Period = 6 seconds and
.
Answer:
The centripetal acceleration of the child at the bottom of the swing is 15.04 m/s².
Explanation:
The centripetal acceleration is given by:
Where:
: is the tangential speed = 9.50 m/s
r: is the distance = 6.00 m
Hence, the centripetal acceleration is:

Therefore, the centripetal acceleration of the child at the bottom of the swing is 15.04 m/s².
I hope it helps you!
Explanation:
It is known that relation between torque and angular acceleration is as follows.

and, I = 
So, 
= 4 


So, 
= 1 
as 
=
Hence, 

Thus, we can conclude that the new rotation is
times that of the first rotation rate.