The first car travels at 60km/h and skid at 30m away from the starting point while another car is also traveling at 180km/h. Now, we need to solve for the skidding distance.
We assigned variables such as:
V1=60km/h
V2=180km/h
Skid1=30m
Skid2=?
We solve this by ratio and proportion method such as shown below:
V1/V2=skid1/skid2
60/180=30/skid2
skid2=(30*180)/60
skid2=90meters
Th answer is 90 meters.
Answer:
La escala del termómetro ''A'' es grados Celsius.
La escala del termómetro ''B'' es grados Fahrenheit.
Explanation:
Para hallar en qué escalas están los termómetros partimos de que la mezcla a la cuál se midió su temperatura mantuvo su temperatura constante.
Esto quiere decir que los termómetros están expresando la misma temperatura pero en una escala distinta.
Sabemos que dada una temperatura en grados Celsius ''C'' si la queremos convertir a grados Fahrenheit ''F'' debemos utilizar la siguiente ecuación :
(I)
Ahora, si reemplazamos y asumimos que la temperatura de 18° es en grados Celsius, entonces si reemplazamos
en la ecuación (I) deberíamos obtener
⇒

Efectivamente obtenemos el valor esperado. Finalmente, corroboramos que la temperatura del termómetro ''A'' está medida en grados Celsius y la temperatura del termómetro ''B'' en grados Fahrenheit.
Thomson experiment he calculated the charge to mass ratio just be passing the fundamental charge through a tube
He calculated the charge to mass ratio just by finding the deflection of charge while it is passing through the constant electric field
so here we will use the deflection as following
let say it passes the field of length "L"
so here we have

now in the same time if it deflect by some distance


now by solving this equation we can find e/m ratio
so here correct answer will be
the electron's charge-to-mass ratio
The other two bulbs stay lit with the same brightness.
To solve this problem we will apply the concepts related to potential gravitational energy. This is defined as the product between mass, acceleration and change in height and can be expressed as,

Here,
m = Mass
g = Gravitational acceleration
= Height
Replacing with our values we have,


Therefore the change in gravitational potential energy is 883J.