The fatal current is 51 mA = 0.051 Ampere.
The resistance is 2,050Ω .
Voltage = (current) x (resistance)
= (0.051 Ampere) x (2,050 Ω) = 104.6 volts .
==================
This is what the arithmetic says IF the information in the question
is correct.
I don't know how true this is, and I certainly don't plan to test it,
but I have read that a current as small as 15 mA through the
heart can be fatal, not 51 mA .
If 15 mA can do it, and the sweaty electrician's resistance is
really 2,050 Ω, then the fatal voltage could be as little as 31 volts !
The voltage at the wall-outlets in your house is 120 volts in the USA !
THAT's why you don't want to stick paper clips or a screwdriver into
outlets, and why you want to cover unused outlets with plastic plugs
if there are babies crawling around.
Answer: what does a,b,c stand for?
Explanation:
Answer:
3Q / 4 pi (R^3 - r^3)
Explanation:
Charge density = charge / volume
volume of a spherical shell = 
Answer:
0.39 J/g°c
Explanation:
= heat / unit of mass × unit of temperature
986.75J/16.75g
= 58.9 J/g
∆T=175°c - 25°c = 150°c
986.75 / 150°c = 6.578
986.75 / 16.75g.150°c = 0.30 j/g°c
For maximum radiation protection the suggested distance between array fan-beam scanner source and the operator is 2m.
The Fan beam 5 position reference system (PRS) uses accurate time-of-flight laser technology to determine vessel position relative to custom reflectors.
A fan beam allows only the measurement of the azimuth angle. A fan beam, one with a narrow beam width in azimuth and a broad beam width in elevation, can be obtained by illuminating an asymmetrical section of the paraboloid.
The operators’ desk should be positioned at least 1m away from a pencil beam, and at least 2m from a fan-beam system. Some older models, that are not now common, require a distance of 3.5 m.
To learn more about scanner here
brainly.com/question/28174696
#SPJ4