Answer:
the acceleration is 130.3m/s²
Explanation:
Given data
Force F= 18.9N
Mass of ball m= 0.145kg
Acceleration a=?
Applying the Newton's second law of motion
"The rate of change of momentum of a body is proportional to the external force".
F=ma
a= F/m
a= 18.9/0.142
a= 130.3m/s²
Answer:
10.2 m
Explanation:
The position of the dark fringes (destructive interference) formed on a distant screen in the interference pattern produced by diffraction from a single slit are given by the formula:

where
y is the position of the m-th minimum
m is the order of the minimum
D is the distance of the screen from the slit
d is the width of the slit
is the wavelength of the light used
In this problem we have:
is the wavelength of the light
is the width of the slit
m = 13 is the order of the minimum
is the distance of the 13th dark fringe from the central maximum
Solving for D, we find the distance of the screen from the slit:

The magnitude of electric field is produced by the electrons at a certain distance.
E = kQ/r²
where:
E = electric field produced
Q = charge
r = distance
k = Coulomb Law constant 9 x10^9<span> N. m</span>2<span> / C</span><span>2
Given are the following:
Q = </span><span>1.602 × 10^–19 C
</span><span>r = 38 x 10^-9 m
Substitue the given:
E = </span>
E = 998.476 kN/C
Answer:
0.5849Weber
Explanation:
The formula for calculating the magnetic flus is expressed as:

Given
The magnitude of the magnetic field B = 3.35T
Area of the loop = πr² = 3.14(0.24)² = 0.180864m²
angle of the wire loop θ = 15.1°
Substitute the given values into the formula:

Hence the magnetic flux Φ through the loop is 0.5849Weber
Answer:
Wavelength, frequency and the photon energy changes as the one goes across the ranges of the electro-magnetic radiations.
Explanation:
Electro-magnetic radiations may be defined as the form of energy that is radiated or given by the electro-magnetic radiations. The visible light that we can see is the one of the electro-magnetic radiations. Other forms are the radio waves, gamma waves, UV rays, infrared radiations, etc.
The wavelength of the radiations decreases as we go from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The frequency of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.
The photon energy of the radiations increases when we move from a. radio waves -- b. infrared radiation -- c. visible light -- d. ultraviolet radiation -- e. gamma radiation.