The word gravity is used to describe the gravitational pull (force) an object experiences on or near the surface of a planet or moon. The gravitational force is a force that attracts objects with mass towards each other. Any object with mass exerts a gravitational force on any other object with mass.
Hope it answers your question!
Brainliest would be nice but of course you don’t gotta :)
Answer:
a) -2.516 × 10⁻⁴ V
b) -1.33 × 10⁻³ V
Explanation:
The electric field inside the sphere can be expressed as:

The potential at a distance can be represented as:
V(r) - V(0) = 
V(r) - V(0) =
₀
V(r) =
₀
Given that:
q = +3.83 fc = 3.83 × 10⁻¹⁵ C
r = 0.56 cm
= 0.56 × 10⁻² m
R = 1.29 cm
= 1.29 × 10⁻² m
E₀ = 8.85 × 10⁻¹² F/m
Substituting our values; we have:

= -2.15 × 10⁻⁴ V
The difference between the radial distance and center can be expressed as:
V(r) - V(0) = 
V(r) - V(0) = ![[\frac{qr^2}{8 \pi E_0R^3 }]^R](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bqr%5E2%7D%7B8%20%5Cpi%20E_0R%5E3%20%7D%5D%5ER)
V(r) = 
V(r) = 
V(r) 
V(r) = -0.00133
V(r) = - 1.33 × 10⁻³ V
Answer:
10.4 m/s
Explanation:
First, find the time it takes for the projectile to fall 6 m.
Given:
y₀ = 6 m
y = 0 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: t
y = y₀ + v₀ t + ½ at²
(0 m) = (6 m) + (0 m/s) t + ½ (-9.8 m/s²) t²
t = 1.11 s
Now find the horizontal position of the target after that time:
Given:
x₀ = 6 m
v₀ = 5 m/s
a = 0 m/s²
t = 1.11 s
Find: x
x = x₀ + v₀ t + ½ at²
x = (6 m) + (5 m/s) (1.11 s) + ½ (0 m/s²) (1.11 s)²
x = 11.5 m
Finally, find the launch velocity needed to travel that distance in that time.
Given:
x₀ = 0 m
x = 11.5 m
t = 1.11 s
a = 0 m/s²
Find: v₀
(11.5 m) = (0 m) + v₀ (1.11 s) + ½ (0 m/s²) (1.11 s)²
v₀ = 10.4 m/s
3 hours and 40 minutes is equivalent to 3.667 hours. If a woman must have run another marathon (of 26.2 miles) within that time, then her minimum average speed in mph can be calculated by dividing the distance by time:
26.2 miles / 3.667 hours = 7.145 miles per hour