As seen from the Earth, the Sun, Moon, and planets all appear to move along the ecliptic. ... Unlike the Sun, however, the planets don't always move in the same direction along the ecliptic. They usually move in the same direction as the Sun, but from time to time they seem to slow down, stop, and reverse direction!
Because of various events in their (unknown) past history that resulted in deviations from the theoretical orbit. That formed in the plain of the ecliptic.
Capturing a large passing comet or asteroid might do it.
Answer:
A=0.80
Explanation:
a=2×100/time^2. a=2×100/15.86^2. = a=0.80
Answer:
It will take 15.55s for the police car to pass the SUV
Explanation:
We first have to establish that both the police car and the SUV will travel the same distance in the same amount of time. The police car is moving at constant velocity and the SUV is experiencing a deceleration. Thus we will use two distance fromulas (for constant and accelerated motions) with the same variable for t and x:
1. 
2. 
Since both cars will travel the same distance x, we can equal both formulas and solve for t:

We simplify the fraction present and rearrange for our formula so that it equals 0:

In the very last step we factored a common factor t. There is two possible solutions to the equation at
and:

What this means is that during the displacement of the police car and SUV, there will be two moments in time where they will be next to each other; at
(when the SUV passed the police car) and
(when the police car catches up to the SUV)
Answer:
A
Explanation:
<em>The gold used in the making of jewelry is usually not pure but a heterogeneous mixture of metals. Pure gold is quite soft and even though it may look better in appearance compared to those made using heterogeneous mixtures, it usually bends easily. Hence, in order to make the jewelry more durable, gold is usually mixed with other metals to form a heterogeneous mixture. </em>
The correct option is A.
Answer:


Explanation:
= Initial momentum of the pin = 13 kg m/s
= Initial momentum of the ball = 18 kg m/s
= Momentum of the ball after hit
= Angle ball makes with the horizontal after hitting the pin
= Angle the pin makes with the horizotal after getting hit by the ball
Momentum in the x direction

Momentum in the y direction


The pin's resultant velocity is 

The pin's resultant direction is
below the horizontal or to the right.