Yes, our friend is right, because there is no contradiction to the law of conservation of mass in the above equation. It just the mass of the product is equal to the mass of reactants.. and that is shown in the equation you have presented earlier
Explanation:
formula: <u>Mass</u>
Density x volume
2a) m=10kg v=0.3m³
10÷0.3=33.3 kg/m
2b) m = 160 kg V=0.1m³
160÷0.1=1600 kg/m
2c) m = 220 kg V = 0.02m³
220÷0.02=11000 kg/m
A wooden post has a volume of 0.025m³ and a mass of 20kg. Calculate its density in kg/m.
density = volume ÷ mass
20÷ 0.025=800 kg/m
Challenge: A rectangular concrete slab is 0.80m long, 0.60 m wide and 0.04m thick. Calculate its volume in m³.
Formula : Length x width x height = Volume
0.80 x 0.60 x 0.04 = 0.0192m³
B) The mass of the concrete slab is 180 kg. Calculate its density in kg/m.
density = volume ÷ mass
180 ÷ 0.0192 = 9375 kg/m
The potential energy of the spring is 6.75 J
The elastic potential energy stored in the spring is given by the equation:

where;
k is the spring constant
x is the compression/stretching of the string
In this problem, we have the spring as follows:
k = 150 N/m is the spring constant
x = 0.3 m is the compression
Substituting in the equation, we get


Therefore. the elastic potential energy stored in the spring is 6.75J .
Learn more about potential energy here:
brainly.com/question/10770261
#SPJ4
It means the speed of the object is increasing
and
there is a positive acceleration in the direction of the velocity
hence
there is a force acting on the object, in the direction of the velocity
Answer:
The length of her shadow is changing at the rate -2 m/s
Explanation:
Let the height oh the street light, h = 22 ft
Let the height of the woman, w = 5.5 ft
Horizontal distance to the street light = l
length of shadow = x
h/w = (l + x)/x
22/5.5 = (l + x)/x
4x = l + x
3x = l
x = 1/3 l
taking the derivative with respect to t of both sides
dx/dt = 1/3 dl/dt
dl/dt = -6 ft/sec ( since the woman is walking towards the street light, the value of l is decreasing with time)
dx/dt = 1/3 * (-6)
dx/dt = -2 m/s