Explanation:
the weight of the people inside the bus
(a) The plane makes 4.3 revolutions per minute, so it makes a single revolution in
(1 min) / (4.3 rev) ≈ 0.2326 min ≈ 13.95 s ≈ 14 s
(b) The plane completes 1 revolution in about 14 s, so that in this time it travels a distance equal to the circumference of the path:
(2<em>π</em> (23 m)) / (14 s) ≈ 10.3568 m/s ≈ 10 m/s
(c) The plane accelerates toward the center of the path with magnitude
<em>a</em> = (10 m/s)² / (23 m) ≈ 4.6636 m/s² ≈ 4.7 m/s²
(d) By Newton's second law, the tension in the line is
<em>F</em> = (1.3 kg) (4.7 m/s²) ≈ 6.0627 N ≈ 6.1 N
Scenes the chair wheels are up the person is rolling backwards and if the wheels were down then the person would go forwards
<span />
Answer:
a) 1.73*10^5 J
b) 3645 N
Explanation:
106 km/h = 106 * 1000/3600 = 29.4 m/s
If KE = PE, then
mgh = 1/2mv²
gh = 1/2v²
h = v²/2g
h = 29.4² / 2 * 9.81
h = 864.36 / 19.62
h = 44.06 m
Loss of energy = mgΔh
E = 780 * 9.81 * (44.06 - 21.5)
E = 7651.8 * 22.56
E = 172624.6 J
Thus, the amount if energy lost is 1.73*10^5 J
Work done = Force * distance
Force = work done / distance
Force = 172624.6 / (21.5/sin27°)
Force = 172624.6 / 47.36
Force = 3645 N
<span>a) 1960 m
b) 960 m
Assumptions.
1. Ignore air resistance.
2. Gravity is 9.80 m/s^2
For the situation where the balloon was stationary, the equation for the distance the bottle fell is
d = 1/2 AT^2
d = 1/2 9.80 m/s^2 (20s)^2
d = 4.9 m/s^2 * 400 s^2
d = 4.9 * 400 m
d = 1960 m
For situation b, the equation is quite similar except we need to account for the initial velocity of the bottle. We can either assume that the acceleration for gravity is negative, or that the initial velocity is negative. We just need to make certain that the two effects (falling due to acceleration from gravity) and (climbing due to initial acceleration) counteract each other. So the formula becomes
d = 1/2 9.80 m/s^2 (20s)^2 - 50 m/s * T
d = 1/2 9.80 m/s^2 (20s)^2 - 50m/s *20s
d = 4.9 m/s^2 * 400 s^2 - 1000 m
d = 4.9 * 400 m - 1000 m
d = 1960 m - 1000 m
d = 960 m</span>