The blank distance is your answer
Answer:
θ=180°
Explanation:
The problem says that the vector product of A and B is in the +z-direction, and that the vector A is in the -x-direction. Since vector B has no x-component, and is perpendicular to the z-axis (as A and B are both perpendicular to their vector product), vector B has to be in the y-axis.
Using the right hand rule for vector product, we can test the two possible cases:
- If vector B is in the +y-axis, the product AxB should be in the -z-axis. Since it is in the +z-axis, this is not correct.
- If vector B is in the -y-axis, the product AxB should be in the +z-axis. This is the correct option.
Now, the problem says that the angle θ is measured from the +y-direction to the +z-direction. This means that the -y-direction has an angle of 180° (half turn).
T² caries directly as R³ .
This is Kepler's 3rd law of planetary motion .
Answer:
A. The sound wave will reflect off Buildings and automobiles.
Explanation:
This is because the sound waves would more likely propagate through diffraction through buildings and transmission through the air. It is also more likely to be absorbed by buildings than for multiple reflections to occur off buildings and automobiles. In the process of reflection, these materials would absorb the sound energy thereby reducing its ability to reflect.
The appropriate answer is 4. The formation of Mid-Ocean ridges. There are two types of divergent margins: continental separation and oceanic floor spreading. Where the sea floor separates magma upwells and new oceanic crust is formed. Mid ocean ridges are home to hydrothermal vents. These support a unique ecosystem of marine organisms. The Mid- Atlantic Ridge where the African and Eurasian plates separate from the North and South American plates.