Answer:
Explanation:
Conclusion is simple you can just say that it is the value written in words form only.
Nothing else is written about it
Answer:
Average speed = distance/time
From 1 to 9 seconds:
Distance covered = 1 - 0.2 = 0.8 km
Time = 9 - 1 = 8 sec
Average speed = 0.8 km / 8 sec
Average speed = 0.1 km/s .
The average speed for the whole test is 1.6 km / 20 sec = 0.08 km/sec. A graph of speed vs time would average out as a horizontal line at 0.08 km/sec from 1 sec to 21 sec. The area under it would be (0.08 km/s) x (20 sec) = 1.6 km.
Surprise surprise ! The area under a speed/time graph is the distance covered during that time !
In closing, I want to express my gratitude for the gracious bounty of 3 points with which I have been showered. Moreover, the green breadcrust and tepid cloudy water have also been refreshing.
Explanation:
It's momentum is twice as much.
Answer:
Explanation:
cSep 20, 2010
well, since player b is obviously inadequate at athletics, it shows that player b is a woman, and because of this, she would not be able to hit the ball. The magnitude of the initial velocity would therefore be zero.
Anonymous
Sep 20, 2010
First you need to solve for time by using
d=(1/2)(a)(t^2)+(vi)t
1m=(1/2)(9.8)t^2 vertical initial velocity is 0m/s
t=.45 sec
Then you find the horizontal distance traveled by using
v=d/t
1.3m/s=d/.54sec
d=.585m
Then you need to find the time of player B by using
d=(1/2)(a)(t^2)+(vi)t
1.8m=(1/2)(9.8)(t^2) vertical initial velocity is 0
t=.61 sec
Finally to find player Bs initial horizontal velocity you use the horizontal equation
v=d/t
v=.585m/.61 sec
so v=.959m/s
Answer:
She can swing 1.0 m high.
Explanation:
Hi there!
The mechanical energy of Jane (ME) can be calculated by adding her gravitational potential (PE) plus her kinetic energy (KE).
The kinetic energy is calculated as follows:
KE = 1/2 · m · v²
And the potential energy:
PE = m · g · h
Where:
m = mass of Jane.
v = velocity.
g = acceleration due to gravity (9.8 m/s²).
h = height.
Then:
ME = KE + PE
Initially, Jane is running on the surface on which we assume that the gravitational potential energy of Jane is zero (the height is zero). Then:
ME = KE + PE (PE = 0)
ME = KE
ME = 1/2 · m · (4.5 m/s)²
ME = m · 10.125 m²/s²
When Jane reaches the maximum height, its velocity is zero (all the kinetic energy was converted into potential energy). Then, the mechanical energy will be:
ME = KE + PE (KE = 0)
ME = PE
ME = m · 9.8 m/s² · h
Then, equallizing both expressions of ME and solving for h:
m · 10.125 m²/s² = m · 9.8 m/s² · h
10.125 m²/s² / 9.8 m/s² = h
h = 1.0 m
She can swing 1.0 m high (if we neglect dissipative forces such as air resistance).