The characteristics of the velocity vector used to find the results for the direction of acceleration and velocity are:
- Acceleration is towards the center of the circle
- The velocity is tangent to the circle counterclockwise.
Newton's Second Law establishes a relationship between force, mass and acceleration of bodies.
<h3>Centripetal acceleration.
</h3>
In the case of circular motion there is a constant change in the direction of the velocity vector, even when its module remains constant, this change in direction points towards the center of the circle, so that the module is constant.
They indicate that the satellite is moving counterclockwise, therefore the speed must go to the left (counterclockwise) tangential to the circle.
In conclusion using the characteristics of the velocity vector we can find the results for the direction of acceleration and velocity are:
- Acceleration is towards the center of the circle
- The velocity is tangent to the circle counterclockwise.
Learn more about centripetal acceleration here: brainly.com/question/25243603
Answer:
a)
b)
c)
d)
e)
Explanation:
Given that
d = 2 cm
V = 200 V

We know that
F = E q
F = m a
E = V/d
So
m a = q .V/d b
---------1
The mass of electron

The charge on electron

Now by putting the all values in equation 1


We know that
a)
s = 0.1 cm


b)
s = 0.5 cm


c)
s = 1 cm


d)
s = 1.5 cm


e)
s = 2 cm


Answer:
that one
Explanation:
actually if u look very closely u can notice that the taco has some dog tird cover up with the rat tail and topped with some soymilk
Answer:
2.09 rad/s
Explanation:
Given that,
A toy car makes 4 laps in 12 s.
We need to find the angular velocity of the toy car. We need to find the angular velocity of the toy car.
4 laps = 25.13 rad
So,

So, the angular velocity of the toy car is 2.09 rad/s.