A galvanic cell is formed when two metals are immersed in solu- tions differing in concentration 1 when two different metals are immersed.
<h3>What is galvanic cell?</h3>
- The galvanic cell utilizes the ability to split the flow of electrons in the process of oxidization and reduction, compelling a half-reaction and connecting each with a wire so that a way can be formed for the flow of electrons via such wire.
- A galvanic cell is an electrochemical cell that transforms the chemical energy of a spontaneous redox response into electrical energy. It has an electrical possibility equal to 1.1 V. In galvanic cells, oxidation occurs at the anode and it is a negative plate. Lessening occurs at the cathode and it is a positive plate.
- A galvanic cell is an electrochemical cell that converts the free liveliness of a chemical method into electrical energy. A photogalvanic cell generates species photochemically which react resulting in an electrical current via an external circuit.
To learn more about galvanic cell, refer to:
brainly.com/question/13031093
#SPJ4
Answer:
remains the same, but the apparent brightness is decreased by a factor of four.
Explanation:
A star is a giant astronomical or celestial object that is comprised of a luminous sphere of plasma, binded together by its own gravitational force.
It is typically made up of two (2) main hot gas, Hydrogen (H) and Helium (He).
The luminosity of a star refers to the total amount of light radiated by the star per second and it is measured in watts (w).
The apparent brightness of a star is a measure of the rate at which radiated energy from a star reaches an observer on Earth per square meter per second.
The apparent brightness of a star is measured in watts per square meter.
If the distance between us (humans) and a star is doubled, with everything else remaining the same, the luminosity remains the same, but the apparent brightness is decreased by a factor of four (4).
Some of the examples of stars are;
- Canopus.
- Sun (closest to the Earth)
- Betelgeuse.
- Antares.
- Vega.
Great Question! I happened to be a physics nerd!
Answer:
C. Two hydrogen nuclei, each with only one proton, fuse to form deuterium, a form of hydrogen with one proton.
MAKE SURE TO SEE EXPLANATION!
Explanation:
In the core of the Sun, or any other main sequence star, there is no single fusion process. Instead, complex sequences of processes occur to make helium nuclei from hydrogen nuclei (i.e. protons). The proton-proton chain provides for the majority of energy generation in stars with masses less than that of the Sun. One difficulty in creating a helium nucleus (two protons and two neutrons) is that there are only protons to begin with. Some protons must be turned into neutrons in some way. The first step is to combine two protons to form a deuterium nucleus (also known as a deuteron). That's a hefty hydrogen nucleus with one proton and one neutron. Such a proton-proton contact is highly unlikely, and it has never been detected in a laboratory. Fortunately, the Sun's core is incredibly hot and dense, with an incredible number of protons packed inside. Even a low likelihood event will occur every now and again. Along with each deuteron, a positron (an "anti-electron") and a neutrino are created. Because the Sun's core is plasma, there are a lot of free electrons, thus the positron doesn't live long until it and an electron collide and annihilate, resulting in gamma radiation. The deuteron then interacts with a proton to form a helium 3 nucleus. That is a high-probability interaction, and it occurs swiftly. Two helium 3 nuclei join in the third phase to generate a helium 4 ("regular" helium) nucleus and a proton. Branch I of the proton-proton (p-p) chain is responsible for this. Another stage is required because reactions between helium 3 and helium 4 nuclei are possible. There are two conceivable reactions (named Branch II and Branch III), and I'll save you the gory details. It gets much more complicated since theoretical calculations indicate that a reaction between a helium 3 nucleus and a proton is feasible — Branch IV. This reaction has an incredibly low likelihood of occurring, far lower than the Branch I reaction, thus it must be exceedingly rare. The Carbon-Nitrogen-Oxygen (CNO) Cycle is another method for reducing hydrogen to helium. It does not generate much energy in the Sun, but it is the principal energy generation mechanism in larger stars.
Answer:
Yes, the relationships you observe in childhood affects the quality of your current relationships.
Explanation:
The saying,<em> "Children see, children do,"</em> is evidently true. A child's lifestyle and future relationships are greatly affected by the kind of relationships you allow him to see. Thus, it is very important that parents become role models for their kids.
For example, when your parents handle stress by shouting at each other, then most likely you'd also handle stress the same way in the future. So,<em> it is essential that the role models will show the child how to handle stress positively.</em> The experiences that children have at a young age affects their adult life.<u> It influences them and shapes them into who they will become.</u>
If people at home show positive relationships with each other and also supports a child regarding his education, then the child will most likely set positive relationships with his peers and achieve higher degree standards.
Thus, this explains the answer.
Answer:
Explanation:
Volume per unit time flowing will be conserved
a₁v₁ = a₂ v₂
π r₁² x v₁ = π r₂² x v₂
(0.9 x 10⁻²)² x .35 = ( .45 x 10⁻² )² x v₂
v₂ = 1.4 m / s