Here we have to calculate the heat required to raise the temperature of water from 85.0 ⁰F to 50.4 ⁰F.
10.857 kJ heat will be needed to raise the temperature from 50.4 ⁰F to 85.0 ⁰F
The amount of heat required to raise the temperature can be obtained from the equation H = m×s×(t₂-t₁).
Where H = Heat, s =specific gravity = 4.184 J/g.⁰C, m = mass = 135.0 g, t₁ (initial temperature) = 50.4 ⁰F or 10.222 ⁰C and t₂ (final temperature) = 85.0⁰F or 29.444 ⁰C.
On plugging the values we get:
H = 135.0 g × 4.184 J/g.⁰C×(29.444 - 10.222) ⁰C
Or, H = 10857.354 J or 10.857 kJ.
Thus 10857.354 J or 10.857 kJ heat will be needed to raise the temperature.
Answer:
Hi do we translate a this
Explanation:
Answer:
diffraction
Explanation:
the correct answer is diffraction
Answer:
-3.28 × 10⁴ J
Explanation:
Step 1: Given data
- Pressure exerted (P): 27.0 atm
- Initial volume (Vi): 88.0 L
- Final volume (Vf): 100.0 L
Step 2: Calculate the work (w) done by the gaseous mixture
We will use the following expression.
w = -P × ΔV = -P × (Vf - Vi)
w = -27.0 atm × (100.0 L - 88.0 L)
w = -324 atm.L
Step 3: Convert w to Joule (SI unit)
We will use the conversion factor 1 atm.L = 101.325 J.
-324 atm.L × 101.325 J/1 atm.L = -3.28 × 10⁴ J
Answer:
The answer is: 11759 Hz
Explanation:
Given: Chemical shift: δ = 211.5 ppm, Spectrometer frequency = 556 MHz = 556 × 10⁶ Hz
In NMR spectroscopy, the chemical shift (δ), expressed in ppm, of a given nucleus is given by the equation:



<u>Therefore, the signal is at 11759 Hz from the TMS.</u>