<span>85% ethanol | 25% ethanol | 50% ethanol
x | y | 20 gal
use x and y because you don;t know how much she needs.
0.85x | 0.25y | 20(0.5)
85% is 85/100 or 0.85, and you need that much of x, same goes for the 25% and 50% mixtures so now you can make up 2 equations
1) x + y = 20 2) 0.85x + 0.25y= 10 (you get 10 when you multiply 20 by 0.5) now you can solve for x or y using substitution.
first rewrite 1) in terms of x or y: x+ y= 20 ----> y= 20 - x now you can substitute 20- x for y in the second equation.. 0.85x + 0.25y= 10 0.85x + 0.25(20-x)= 10 distribute here..(0.25 * 20 and 0.25 * (-x) ) 0.85x + 5 - 0.25x = 10 combine like terms 0.6x +5 = 10 move the 5 over to the other side 0.6x= 10 -5 0.6x = 5 divide both sides by 0.6 x= 25/3 or 8.3 now you know the amount of x so you can substitue this back into the first equation to find y. 0.85x + 0.25y= 10 0.85(25/3) +0.25y= 10 85/12 + 0.25y= 10 0.25y = 10- 85/12 0.25y= 35/12 y= 35/3 or 11.6 you can check by putting these values into the euations: 1) x+ y= 20 25/3 + 35/3 =20 20= 20 good so far 2) 0.85x + 0.25y= 10 0.85(25/3) + 0.25(35/3)=10 10 = 10
so our values for x and y work
x= 25/3 and y= 35/3</span>
Answer:
See explanation
Explanation:
Electro negativity refers to the ability of an atom in a molecule to attract the shared pair of electrons of a bond closer to itself.
In a molecule, the polarity of bonds is determined by the relative electro negativity of the bonding atoms. If the difference in electro negativity between the atoms in a bond is significant, such a bond is polar in nature e.g H-Cl, H-Br, C-F, etc.
However, the occurrence of polar bonds in a molecule alone does not guarantee the polarity of the molecule. The polarity of a molecule also depends on the shape of the molecule since dipole moment is a vector quantity.
A molecule is polar when the resultant dipole moment which is determined by the shape of the molecule is non zero.
For instance, CO2 contains two polar C-O bonds but the molecule is non polar because the two dipole moments cancel out. Also, symmetrical molecules are nonpolar irrespective of the presence of polar bonds in the molecule.
I think its
<span>The Mechanical energy in a mechanical system is determined by adding the potential and kinetic energy together. </span>
Answer: 3) 39.96 amu
Explanation:
Mass of isotope Ar- 36 = 35.97 amu
% abundance of isotope Ar- 36= 0.337% = 
Mass of isotope Ar- 38 = 37.96 amu
% abundance of isotope 2 = 0.063 % = 
Mass of isotope Ar- 40 = 39.96 amu
% abundance of isotope 2 = 99.600 % = 
Formula used for average atomic mass of an element :

![A=\sum[(35.97\times 3.37\times 10^{-3})+(37.96\times 6.3\times 10^{-4})+(39.96\times 0.996)]](https://tex.z-dn.net/?f=A%3D%5Csum%5B%2835.97%5Ctimes%203.37%5Ctimes%2010%5E%7B-3%7D%29%2B%2837.96%5Ctimes%206.3%5Ctimes%2010%5E%7B-4%7D%29%2B%2839.96%5Ctimes%200.996%29%5D)

Therefore, the average atomic mass of argon is 39.96 amu
Nuclei may be unstable if they have
a too much energy.
b too many protons.
C an unstable ratio of protons to neutrons.
d any of the above.
The answer would be, D any of the above.
Hope this helps