The kinetic energy of the child at the bottom of the incline is 106.62 J.
The given parameters:
- <em>Mass of the child, m = 16 kg</em>
- <em>Length of the incline, L = 2 m</em>
- <em>Angle of inclination, θ = 20⁰</em>
The vertical height of fall of the child from the top of the incline is calculated as;

The gravitational potential energy of the child at the top of the incline is calculated as;

Thus, based on the principle of conservation of mechanical energy, the kinetic energy of the child at the bottom of the incline is 106.62 J since no energy is lost to friction.
Learn more about conservation of mechanical energy here: brainly.com/question/332163
We know that the average speed is simply the ratio of the
total distance travelled over the total duration of the trip.
total distance = 500 mi + 380 mi + 600 mi
total distance = 1,480 mi
total time = 10 h + 8 h + 15 h
total time = 33 h
So the average speed is therefore:
average speed = 1,480 mi / 33 h
<span>average speed = 44.85 mi / h</span>
Answer:
Therefore, the moment of inertia is:
Explanation:
The period of an oscillation equation of a solid pendulum is given by:
(1)
Where:
- I is the moment of inertia
- M is the mass of the pendulum
- d is the distance from the center of mass to the pivot
- g is the gravity
Let's solve the equation (1) for I


Before find I, we need to remember that
Now, the moment of inertia will be:
Therefore, the moment of inertia is:
I hope it helps you!
According to the position vs time graph, the <em>average</em> <em>velocity</em> of the motorcycle is the change in position divided by the change in time. Also, note that the slope is linear and positive throughout the 5 hours, it doesn't change direction.
Therefore, we have
Avg velocity = change in direction/change in time
Avg velocity = (150km - 30km)/(5h - 0h)
Avg velocity = 24km/hr south.