Answer:
210
Explanation:
A ball rolls horizontally off the cliff at a speed of 30 m/s. It takes 7 seconds for the ball to hit the ground. What is the height of the cliff and the horizontal distance traveled by the ball?
S = (1/2)*9.8 m/s^2 * 7^2 = 240.1 m if the ball is very dense so air resistance, and therefore terminal velocity, can be ignored.
S = v * t = 30 m/s * 7 s = 210 m for the horizontal distance, again assuming negligible air resistance.

Where r is the radius of balloon.
Here mass of woman = 68 kg
Mass of air displaced by a balloon with volume V = 1.29*V
Mass of helium inside balloon = 0.178*V
Total mass to be lifted by balloon = 68 +0.178*V
Buoyant force = 1.29V-0.178V=1.112V
So we have 1.112 V = 68+ 0.178*V
0.934 V = 68
V = 72.81 
\frac{4}{3} \pi r^{3}[/tex]= 72.81
r = 2.59 m
So radius of helium balloon = 2.59 m
Answer:
Distance, d = 0.1 m
It is given that,
Initial velocity of meson,
Finally, the meson is coming to rest v = 0
Acceleration of the meson, (opposite to initial velocity)
Using third equation of motion as :
s is the distance the meson travelled before coming to rest.
So,
s = 0.1 m
The meson will cover the distance of 0.1 m before coming to rest. Hence, this is the required solution.