I think it’s the one that has a Br
Answer:
Assume that the sack was initially close to the sea level. Its weight will increase even though its mass stays the same.
Explanation:
The weight of an object typically refers to the size of the planet's gravitational attraction (a force) on this object. That's not the same as the mass of the object. The weight of an object at a position depends on the size of the gravitational field there; on the other hand, the mass of the object is supposed to be same regardless of the location- as long as the object stays intact.
Let
denote the strength of the gravitational field at a certain point. If the mass of an object is
, its weight at that point will be
.
Indeed,
on many places of the earth. However, this value is accurate only near the sea level. The equation for universal gravitation is a more general way for finding the strength of the gravitational field at an arbitrary height. Let
denote the constant of universal gravitation, and let
denote the mass of the earth. At a distance
from the center of the earth (where
.
The elevation of many places in Bhutan are significantly higher than that of many places in India. Therefore, a sack of potato in Bhutan will likely be further away from the center of the earth (larger
) compared to a sack of potato in India.
Note, that in the approximation, the value of
is (approximately, because the earth isn't perfectly spherical) inversely proportional to the distance from the center of the planet. The gravitational field strength
On the other hand, the weight of an object of fixed mass is proportional to the gravitational field strength. Therefore, the same bag of potatoes will have a smaller weight at most places in Bhutan compared to most places in India.
The correct option is A.
To calculate the binding energy, you have to find the mass defect first.
Mass defect = [mass of proton and neutron] - Mass of the nucleus
The molar mass of thorium that we are given in the question is 234, the atomic number of thorium is 90, that means the number of neutrons in thorium is
234 - 90 = 144.
The of proton in thourium is 90, same as the atomic number.
Mass defect = {[90 * 1.00728] +[144* 1.00867]} - 234
Note that each proton has a mass of 1.00728 amu and each neutron has the mass of 1.00867 amu.
Mass defect = [90.6552 + 145.24848] - 234 = 1.90368 amu.
Note that the unit of the mass is in amu, it has to be converted to kg
To calculate the mass in kg
Mass [kg] = 1.90368 * [1kg/6.02214 * 10^-26 = 3.161135 * 10^-27
To calculate the binding energy
E = MC^2
C = Speed of light constant = 2.9979245 *10^8 m/s2
E = [3.161135 * 10^-27] * [2.9979245 *10^8]^2
E = 2.84108682069 * 10^-10.
Note that we arrive at this answer because of the number of significant figures that we used.
So, from the option given, Option A is the nearest to the calculated value and is our answer for this problem.
Explanation: This is a reaction of oxidation of
in the presence of acidified
. Acidified
is a strong oxidizing agent.
To balance out the
on the reactant side, we write
on the product side.
Balancing out the following reaction gives us:

Answer:
Mass is the amount of matter in an object and does not change with location.
Explanation: