Answer:
6,1,2
Explanation:
_Ag + _N2 => _Ag3N
LHS RHS
Ag=1×6=3 Ag=3×2=6(Balanced)
N=2×1=2 N=1×2=2(Balanced)
coefficient=6,1,2
Answer:
Molecular formula: S4K8O16 empirical formula: SK2O4
Explanation:
First we find the moles of each by first finding grams (using the percent) and then using stoichiometry to convert into moles:
Sulfur: 696 *.18 = 125.28grams S* 
Potassium: 696 *.4487 = 312.2952 *
= 7.99117 mole K
Oxygen: 696 * .367 = 255.432 *
= 15.9654 mole O
Then we divide each value by the atom with the smallest number of moles to find the mole ratio:
3.907/3.907= 1
7.99117 mole K/ 3.907= 2.043
15.9654 mole O/ 3.907= 4.08
The empirical formula is SK2O4
To find the molecular formula, we divide the mass given (696) by the mass of the empirical formula (174.22) to get 4. We then divide each atom by 4.
Molecular formula: S4K8O16
Answer:
Kim kim kim kim kim ath marath enthe kantha
Explanation:
Ninn chumbenem enne thellerthii.
Nin vadabell enne shwasichu!
Answer:
T = 525K
Explanation:
The temperature of the two-level system can be calculated using the equation of Boltzmann distribution:
(1)
<em>where Ni: is the number of particles in the state i, N: is the total number of particles, ΔE: is the energy separation between the two levels, k: is the Boltzmann constant, and T: is the temperature of the system </em>
The energy between the two levels (ΔE) is:
<em>where h: is the Planck constant, c: is the speed of light and k: is the wavenumber</em>
Solving the equation (1) for T:
<em>With Ni = N/3 and k = 1.38x10⁻²³ J/K, </em><em>the temperature of the two-level system is:</em><em> </em>
I hope it helps you!