Answer:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles.
When we have this balanced equation for a reaction:
Fe(OH)2(s) ↔ Fe+2 + 2OH-
when Fe(OH)2 give 1 mole of Fe+2 & 2 mol of OH-
so we can assume [Fe+2] = X and [OH-] = 2 X
when Ksp = [Fe+2][OH-]^2
and have Ksp = 4.87x10^-17
[Fe+2]= X
[OH-] = 2X
so by substitution
4.87x10^-17 = X*(2X)^2
∴X^3 = 4.8x10^-17 / 4
∴the molar solubility X = 2.3x10^-6 M
Answer:
Vf = 1.22 mL
Explanation:
If we assume that the pressure is constant and the number of moles does not change, we can say that the volume of the gas is modified in a directly ratio, to the Absolute Temperature.
Let's convert the values:
91°C + 273 = 364K
0.9°C + 273 = 273.9K
Volume decreases if the temperature is decreases
Volume increases if the T° increases
V₁ / T₁ = V₂ / T₂ → 1.63mL /364K = V₂ / 273.9K
V₂ = (1.63mL /364K) . 273.9K → 1.22 mL
Answer:
Nucleotides are made up of a five carbon sugar such as ribose or deoxyribose and a group of phosphate with 1-3 phosphates
Answer:
H2 > N2 > Ar > CO2
Explanation:
Graham's law explains why some gases efuse faster than others. This is due to the difference i their molar mass. Generally; The rate of effusion of gaseous substances is inversely proportional to the square rot of its molar mass.
This means gases with low molar masses would have higher efusion rate compared to gases with higher molar masses.
So now we just need to compare the molar masses of the various gases;
Ar - 39.95
CO2 - 44.01
H2 - 2
N2 - 28.01
To obtain the order in increasing rate, we have to order the gases in decreasing molar mass. This order of increasing rate is given as;
H2 > N2 > Ar > CO2