Answer : The specific heat of the substance is 0.0936 J/g °C
Explanation :
The amount of heat Q can be calculated using following formula.

Where Q is the amount of heat required = 300 J
m is the mass of the substance = 267 g
ΔT is the change in temperature = 12°C
C is the specific heat of the substance.
We want to solve for C, so the equation for Q is modified as follows.

Let us plug in the values in above equation.


C = 0.0936 J/g °C
The specific heat of the substance is 0.0936 J/g°C
Answer:
a.
Explanation:
At 28 degrees highest line is CaCl2. Answer a.
Answer:
Dalton's atomic theory states that atoms may be mixed in certain rations to produce compounds, while the law of conservation of mass states that the mass of reactants equals the mass of products. They are related because in the production of compounds, Dalton made it clear that mass can neither be destroyed or created, which supports the conservation of mass law.
Explanation:^^^
Hoped it helped...
Answer:
The answer to your question is Mg loses its valence electrons and acquire a positive charge (Mg⁺²).
Explanation:
Valence electrons are important for an element to attach to another one, metals lose these electrons while nonmetals gain electrons to complete the octet rule.
Magnesium is a metal that loses these electrons so when it becomes an ion Magnesium will have a positive charge Mg⁺².