Recall that density is Mass/Volume. We are given the mL of liquid which is volume so all we need is mass now. We are given the mass of the granulated cylinder both with and without the liquid, so if we subtract them, we can get the mass of the liquid by itself. So, 136.08-105.56= 30.52g. This is the mass of the liquid. We now have all we need to find the density. So, let’s plug these into the density formula. 30.52g/45.4mL= 0.672 g/mL. This is our final answer since the problem requests the answer in g/mL, but be careful, because some problems in the future may ask for g/L requiring unit conversions. Also note that 30.52 was 4 sigfigs and 45.4 was 3 sigfigs, and so dividing them required an answer that was 3 sigfigs as well, hence why the answer is in the thousandths place
Chemical bonds is the answer
Equation for Half life :
A = a(0.5)^(t/h)
A is current amount, "a" is initial amount, h is halflife, t is time
5 = 40(0.5)^(t/1.3x10^9)
5/40 = (0.5)^(t/1.3x10^9)
take the log of both sides , power rule
Log(5/40) = (t/1.3x10^9) * Log(0.5)
(1.3x10^9) * Log(5/40) / Log(0.5) = t
3.9x10^9 years = t
And if you think about what a half life is, the time it take for the amount to reduce to half.
40/2 = 20
20/2 = 10
10/2 = 5
It went through 3 half-lifes
3 * 1.3x10^9 = 3.9x10^9 years
1) As can be seen from any 1H NMR chemical shift ppm tables, hydrogens which have δ values from 2ppm to 2.3ppm are hydrogens from carbon which is bonded to a carbonyl group. From this, we can conclude that our hydrogens belong to the type, but from 2 different alkyl groups because of 2 different signals.
2) So, one alkyl group is CH3 and second one can be CH or CH2.
3) If we know that ratio between two types of hydrogens is 3:2, it can be concluded that second alkyl group is CH2.
4) Finally, we don't have any other signals and it indicates that part of the compound which continues on CH2 is exactly the same as the first part.
The ratio remains the same, 3:2 ie 6:4
The cell walls are different, plant cells require more rigidity. that's all I know