Answer:
Explanation:
During the first .8 s , the elevator is under acceleration . It starts from initial velocity u = 0 , final velocity v = 1.2 m /s , time = .8 s
v = u + at
1.2 = 0 + .8 a
a = 1.2 / .8
= 1.5 m /s²
During the acceleration in upward direction , let reaction force of ground on man be R .
Net force on man = R - mg
Applying Newton's 2 nd law
R - mg = ma
R = m ( g + a )
= 72 ( 9.8 + 1.5 )
= 813.6 N .
This reaction force will be measured by spring scale , so reading of spring scale will be 813.6 N .
Explanation:
It is given that,
The volume of a right circular cylindrical, 
We know that the volume of the cylinder is given by :

............(1)
The upper area is given by :



For maximum area, differentiate above equation wrt r such that, we get :



r = 1.83 m
Dividing equation (1) with r such that,



Hence, this is the required solution.
Answer:
On the magnitude of the charges, on their separation and on the sign of the charges
Explanation:
The magnitude of the electric force between two charges is given by

where
k is the Coulomb's constant
q1, q2 are the magnitudes of the two charges
r is the separation between the charges
From the formula, we see that the magnitude of the force depends on the following factors:
- magnitude of the two charges
- separation between the charges
Moreover, the direction of the force depends on the sign of the two charges. In fact:
- if the two charges have same sign, the force is repulsive
- if the two charges have opposite signs, the force is attractive
Answer: 1. The field energy will increase
2. The energy increases, and the lines of force are denser
3. It points toward the field of earths magnetic poles
4. 1 and 2 only
5. 2, 4, 1, 3
Explanation: just took it
Answer:
194,400 joules of kinetic energy.
Explanation:
Remember that to calculate the Kinetic energy you need to use the next formula:

We know that Mass= 1200 kg and velocity is 18m/s, so we insert those values into the formula:

So the kinetic energy of a car moving at 18m/s with a mass of 1200 kg would be 194,400 joules.