The first one. The E and B chatacteristic are perpendicular to eachother. The direction of the wave can be found by the right hand rule.
Answer:
128 m
Explanation:
From the question given above, the following data were obtained:
Horizontal velocity (u) = 40 m/s
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Horizontal distance (s) =?
Next, we shall determine the time taken for the package to get to the ground.
This can be obtained as follow:
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
50 = ½ × 9.8 × t²
50 = 4.9 × t²
Divide both side by 4.9
t² = 50 / 4.9
t² = 10.2
Take the square root of both side
t = √10.2
t = 3.2 s
Finally, we shall determine where the package lands by calculating the horizontal distance travelled by the package after being dropped from the plane. This can be obtained as follow:
Horizontal velocity (u) = 40 m/s
Time (t) = 3.2 s
Horizontal distance (s) =?
s = ut
s = 40 × 3.2
s = 128 m
Therefore, the package will land at 128 m relative to the plane
Answer:
one-third of its weight on Earth's surface
Explanation:
Weight of an object is = W = m*g
Gravity on Earth = g₁ = 9.8 m/s
Gravity on Mars = g₂ =
g₁
Weight of probe on earth = w₁ = m * g₁
Weight of probe on Mars = w₂ = m * g₂ -------- ( 1 )
As g₂ = g₁/3 --------- ( 2 )
Put equation (2) in equation (1)
so
Weight of probe on Mars = w₂ = m * g₁ /3
Weight of probe on Mars =
m * g₁ =
w₁
⇒Weight of probe on Mars =
Weight of probe on earth
-- Electrons are leptons. There are <em>three</em> electrons in each neutral Lithium atom.
The last two parts of the question are absurd.
-- Bonbons are candy, not atomic particles. A bonbon cannot fit into a Lithium atom.
-- A pentagon is a closed geometric figure that has five sides. Although you could, in principle, have a pentagon small enough to fit into a Lithium atom, you could never find a piece of paper small enough to draw it on.
The distance vs time graph of a faster moving object would have a greater slope than that of a slower moving one. The object would move a greater distance per unit time